# 新浦化学(泰兴)有限公司 年产50万吨乙烯法聚合技术制备聚氯 乙烯项目

竣工环境保护验收监测报告

建设单位:新庸化学(泰英)高有限公司2025年9月

建设单位法人代表

编制单位法人代表:

项目负责人: 了沙霞 报告编写人: 了冷霞

(签字)

(签字)

涂勇

酸

建设单位 (盖章) (盖章) (盖章) (盖章) 邮编: 283101A20

地址: 江苏省泰关经济开发区 疏港路1号. 编制单位

电话:

传真:

邮编:



地址: 南京年建邺区初小洲街道

# 目 录

| 1 | 验收项目概况                     | 1  |
|---|----------------------------|----|
| 2 | 验收监测依据                     | 3  |
| 3 | 工程建设概况                     | 4  |
|   | 3.1 地理位置及平面布置              | 4  |
|   | 3.2 建设内容                   | 8  |
|   | 3.3 主要生产设备                 | 15 |
|   | 3.4 主要原辅材料                 | 25 |
|   | 3.5 公用工程                   | 26 |
|   | 3.6 生产工艺                   | 33 |
|   | 3.7 项目变动情况                 | 43 |
| 4 | 环境保护设施                     | 51 |
|   | 4.1 污染物治理/处置设施             | 51 |
|   | 4.2 其他环保设施                 | 63 |
|   | 4.3 排污许可证申请情况              | 67 |
|   | 4.4 环保设施投资及"三同时"落实情况       | 67 |
| 5 | 建设项目环评报告书的主要结论与建议及审批部门审批决定 | 71 |
|   | 5.1 建设项目环评报告书的主要结论与要求      | 71 |
|   | 5.2 审批部门审批决定               | 73 |
| 6 | 验收执行标准                     | 76 |
|   | 6.1 废水排放标准                 | 76 |
|   | 6.2 废气排放标准                 | 77 |
|   | 6.3 厂界噪声标准                 | 78 |
|   | 6.4 固废执行标准                 | 78 |
|   | 6.5 总量控制指标                 | 78 |
| 7 | 验收监测内容                     | 80 |
|   | 7.1 环境保护设施调试效果             | 80 |
| 8 | 质量保证及质量控制                  | 82 |
|   | 8.1 监测分析方法                 | 82 |

| 8.2 监测仪器                | 83  |
|-------------------------|-----|
| 8.3 人员资质                | 84  |
| 8.4 水质监测分析过程中的质量保证和质量控制 | 86  |
| 8.5 气体监测分析过程中的质量保证和质量控制 | 86  |
| 8.6 噪声监测分析过程中的质量保证和质量控制 | 86  |
| 9 验收监测结果                | 88  |
| 9.1 生产工况                | 88  |
| 9.2 环保设施调试效果            | 89  |
| 9.4"环评批复"落实情况检查         | 98  |
| 10 验收监测结论               | 102 |
| 10.1 结论                 | 102 |
| 10.2 建议                 | 103 |
| 11 建设项目环境保护"三同时"竣工验收登记表 | 104 |

### 附件:

附件1:项目环评批复;

附件 2: 排污许可证

附件3:污水纳管协议;

附件 4: 应急预案备案意见;

附件 5: 危废处置协议;

附件 6: 立项备案;

附件7: 监测报告;

附件 8: 一般变动影响分析报告技术评审意见

### 1验收项目概况

新浦化学(泰兴)有限公司(以下简称"新浦化学")系新加坡新浦化学私营有限公司全资子公司,位于泰兴经济开发区疏港路1号,成立于1995年12月30日。为更好地发挥新浦化学(泰兴)有限公司上游一体化优势,减少关联交易,优化资源配置,降低管理成本,新浦化学(泰兴)有限公司于2022年吸收合并所属全资子公司新浦烯烃(泰兴)有限公司以及新浦烯烃(泰兴)有限公司全资子公司新浦化学仓储(泰兴)有限公司。经过数次扩建和发展,新浦化学现有年产76.5万吨离子膜烧碱装置、年产90万吨氯乙烯装置、年产32万吨苯乙烯装置、110万吨/年轻烃综合利用项目、年产31万吨苯乙烯聚合物装置和自备热电厂。随着轻烃装置开车,乙烯产量达到78万吨/年,为平衡厂内富裕的氯气和乙烯,新浦化学于2020年实施"年产40万吨氯乙烯项目",该项目建成后,新浦化学将有约56万吨/年的富余氯乙烯等待消化。

为促进公司及泰兴经济开发区产业链完善,同时缓解我国优质聚氯乙烯原料紧张的局面,新浦化学拟投资 134554 万元,以厂内富余氯乙烯为主要原料,在江苏省泰兴经济开发区新征地块建设年产 50 万吨聚氯乙烯项目。主要建设内容为:新建聚氯乙烯生产装置、聚氯乙烯包装、成品仓库等建构筑物,购置相应生产设备建设 2 条聚氯乙烯生产线,建成后将形成年产 50 万吨聚氯乙烯的生产规模。新浦化学于 2020 年委托南京国环科技股份有限公司编制了《年产 50 万吨乙烯法聚合技术制备聚氯乙烯项目环境影响报告书》,于 2022 年 11 月获得了泰州市生态环境局关于该项目的环评批复(泰环审(泰兴)(2022) 224 号)。项目于 2022 年 12 月 19 日开工建设,2024 年 12 月竣工,目前处于试运行状态,准备环保验收。本项目建设时序见下表。

序号 项目 执行情况 2020年8月10日由泰州市发改委以"泰发改备〔2020〕4号" 1 备案 予以备案 2022年11月21日由泰州市生态环境局以泰环审(泰兴) 2 环评批复 (2022) 224 号予以批复 3 动工时间 2022年12月19日开工建设 竣工时间 2024年12月 项目主体工程及环保治理设施已投入运行 工程实际建设情况

表 1-1 项目建设情况表

根据《国务院关于修改〈建设项目环境保护管理条例〉的决定》(中华人民共和国国务院令第682号)、《建设项目竣工环境保护验收技术指南污染影响类》(生态环境部公告2018年第9号)、《建设项目竣工环境保护验收暂行办法》(国环规环评[2017]4号)

等文件精神要求,现新浦化学(泰兴)有限公司自主开展"年产 50 万吨乙烯法聚合技术制备聚氯乙烯项目"水、大气、噪声、固废污染防治设施竣工环境保护验收工作。目前,本项目生产能力均达到设计规模 75%以上,具备项目竣工环保验收监测条件。

2025年5月26日~27日,南京爱迪信环境技术有限公司在项目主体工程及环保设施正常运行情况下,对验收项目进行了现场监测。

# 2 验收监测依据

- (1)《中华人民共和国环境保护法》(2015年1月1日);
- (2)《建设项目环境保护管理条例》(国务院令第682号);
- (3)关于发布《建设项目竣工环境保护验收暂行办法》的公告(国环规环评(2017)4号);
  - (4)《建设项目竣工环境保护验收技术指南 污染影响类》(公告 2018 年 第 9 号);
  - (5)《关于印发建设项目竣工环境保护验收现场检查及审查要点的通知》(环办〔2015〕113号);
    - (6)《关于建设项目竣工环境保护验收有关事项的通知》(苏环办〔2018〕34号);
    - (7)《排污单位自行监测技术指南 总则》(HJ 819-2017);
    - (8)《排污单位自行监测技术指南 聚氯乙烯工业》(HJ 1245-2022);
    - (9)《排污许可证申请与核发技术规范 聚氯乙烯工业》(HJ 1036-2019);
- (10)《江苏省排污口设置及规范化整治管理办法》(江苏省环境保护局,苏环控(97) 122号);
- (11)《关于印发<污染影响类建设项目重大变动清单(试行)>的通知》(环办环评函(2020)688号);
  - (12)《关于建设项目竣工环境保护验收有关事项的通知》(苏环办(2018)34号);
- (13)《关于规范建设单位自主开展建设项目竣工环境保护验收的通知》(环办环评函(2017)1235号);
- (14)《关于进一步完善建设项目环境保护"三同时"及竣工环境保护自主验收监管工作机制的意见》(环执法〔2021〕70号);
- (15)《新浦化学(泰兴)有限公司年产50万吨乙烯法聚合技术制备聚氯乙烯项目环境影响报告书》及其批复(泰环审(泰兴)(2022)224号);
- (16)《新浦化学(泰兴)有限公司突发环境事件应急预案》(备案号: 321283-2024-217-H)
  - (17) 新浦化学(泰兴)有限公司提供的其它有关资料。

### 3工程建设概况

### 3.1 地理位置及平面布置

#### (1) 项目地理位置及厂界周边概况

本项目厂址位于泰兴经济开发区闸南路东侧、威立雅环保科技(泰兴)有限公司西侧、运河南路南侧、疏港路北侧;项目地理位置见图 3.1-1。

根据项目环评报告: "厂区东侧为泰兴苏伊士废料处理有限公司; 南侧为江苏科鼐生物制品有限公司; 西侧为闸南路, 隔路为双乐颜料泰兴市有限公司; 北侧为运河南路, 隔路为如泰运河。

本项目建成后,新浦化学公司卫生防护距离设置包络线为: 南厂 A 区以离子膜烧碱装置外 800m 范围; 南厂 B 区以厂界外 800m 范围; 北厂区以乙苯-苯乙烯装置外 500m、VCM 罐区外 1000m、厂界外 300m; 烯烃厂区以乙烯装置、球罐区、火炬、现有危废暂存库、VCM 装置、VCM 储罐区、EDC 罐区、新建危废暂存库为起点设置 50m 卫生防护距离:本次新征地块: PVC 装置、危废库为边界外 50m 范围。"

根据现场调查情况,公司东侧变更为威立雅环保科技(泰兴)有限公司,其他侧周围环境概况与环评报告一致,卫生防护距离内主要为本项目自身用地、周边工业用地,无居民等环境敏感目标,此范围内以后也不得建设环境敏感目标。周边环境概况见图 3.1-2。

#### (2) 厂区平面布置图

本项目厂区呈规则四边形,由生产区和辅助区组成。其中主入口位于厂区南端,生产车间包括聚合厂房、干燥厂房等,位于厂区东部;辅助区包括引发剂冷库、PVC仓库、包装厂房、化学品库、综合仓库、循环水站等,位于厂区西侧。

实际建设时,项目建设地点与厂区平面布置与环评报告内容一致,实际建成后厂区总平面布置见图 3.1-3。

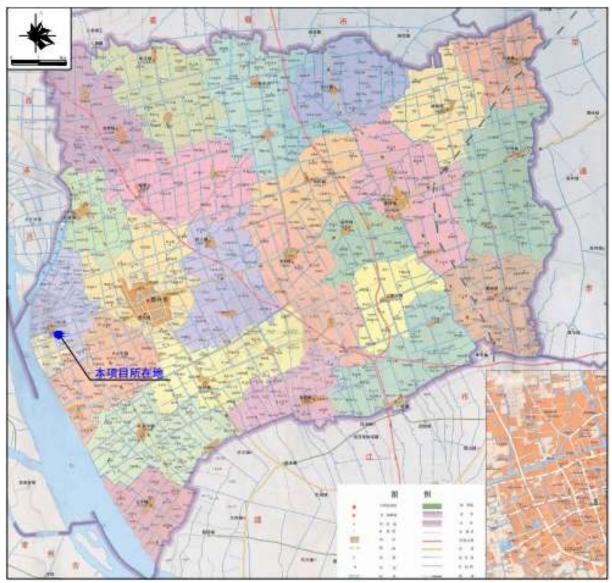



图 3.1-1 项目地理位置图

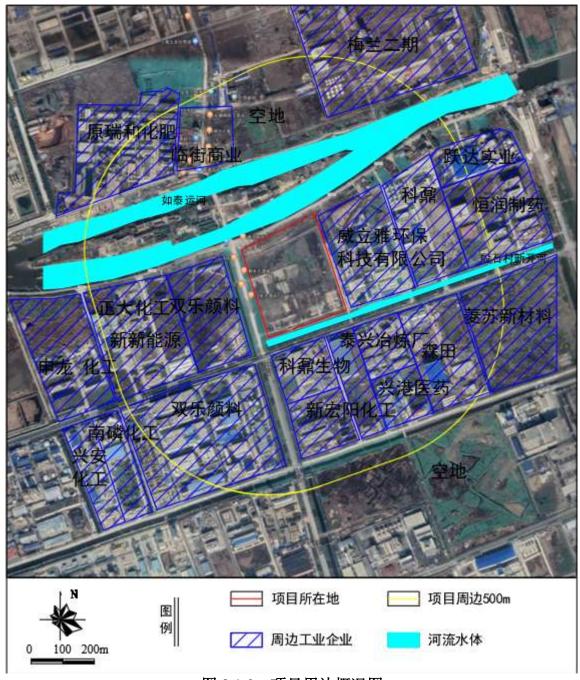



图 3.1-2 项目周边概况图

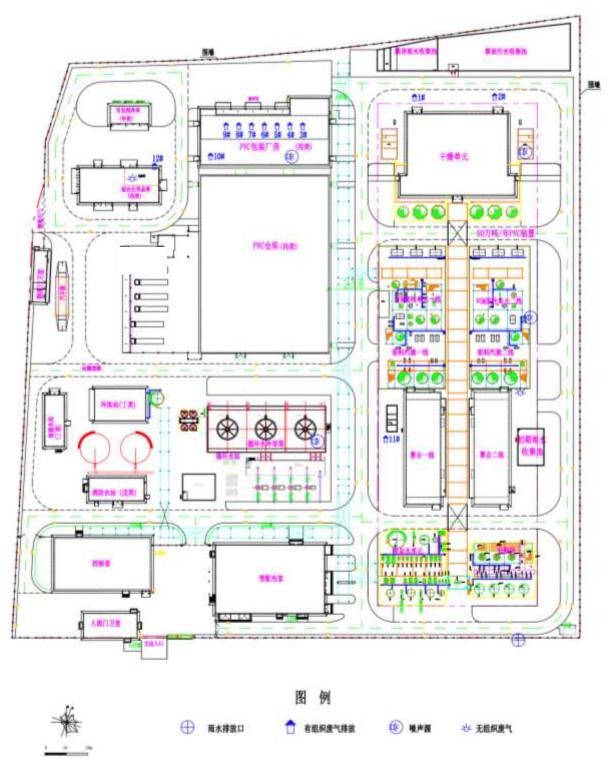



图 3.1-3 厂区总平面布置图

### 3.2 建设内容

根据环评报告,本项目建设内容为:新建生产车间、化学品库、PVC仓库等建筑及配套公用工程及辅助设施,购置相应生产设备建设2条生产线,用于生产聚氯乙烯树脂产品。项目新增建筑面积约34386m²,项目建成后将形成年产50万吨聚氯乙烯树脂的生产规模。实际建成后生产规模与环评报告内容一致。

根据环评报告: PVC 项目各类原辅材料及产品储存仓库、循环冷却水站、配电房等公辅工程及危废库等均为新建(新建危废库贮存能力不足时,依托新浦化学厂区现有危废库),脱盐水站、净水厂、供热、氮气等依托新浦化学厂区现有。 VCM 回收单元有机废气依托公司烯烃厂区在建"年产 40 万吨氯乙烯项目"配套工业酸装置综合利用后经一级碱洗处理后排放,目前该项目正在建设中,预计2022 年年底建成;废水处理系统(离心母液处理系统)以"废水装置改造升级项目"评价建设,预计 2024 年 4 月建成。项目各类原料、废气、废水等厂外(厂界外 1m 以外部分)管线以"新浦化学装置配套公用外管扩建项目"另行评价建设,PVC 项目相关设计管线预计 2024 年 4 月开车。本项目生产约需氯乙烯原料50 万 t/a,部分原料来自新浦化学公司现有 50t/a 氯乙烯装置 高余产品(约 20 万 t/a),剩余部分由公司烯烃厂区在建"40 万 t/a 氯乙烯装置项目"提供,目前正在建设中,预计 2022 年 10 建成,在本项目投产前投入生产,因此本项目原料供应可行。

实际建成后,PVC项目各类原辅材料及产品储存仓库、循环冷却水站、配电房等公辅工程及危废库等均为新建(新建危废库贮存能力不足时,依托新浦化学厂区现有危废库),脱盐水站、净水厂、供热、氮气等依托新浦化学厂区现有。新浦化学"年产 40 万吨氯乙烯项目"及配套工业酸装置、废水处理系统(离心母液处理系统)、"新浦化学装置配套公用外管扩建项目"等目前均已建成,依托可行。

本项目工程内容组成见表 3.2-1,各建筑建设情况见表 3.2-2,产品方案见表 3.2-3。

表 3.2-1 项目建设内容一览表

| 工    |                    | 项目内容                                                                                         | 备注                                          | 实际建设情况                              |
|------|--------------------|----------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------|
| 主体工程 | 生产车间等              | 2条聚合生产线,形成年产50万吨聚氯乙烯生产规模                                                                     | 新建                                          | 与环评内容一致                             |
|      | PVC 仓库             | 位于厂区西侧中部,占地面积约 6885.4m²,用于暂存 PVC<br>成品                                                       | 新建                                          | 与环评内容一致                             |
| 贮运工程 | 综合化学品库             | 位于厂区西北侧,占地面积 624.16m², 内设隔间 128m²用 作危废仓库,用于暂存危险废物; 其他库房用于暂存各类 分散剂、终止剂、防粘釜剂等各类化学品及各类备件、材料、器具等 | 新建                                          | 与环评内容一致                             |
|      | 引发剂冷库              | 位于厂区西北侧,占地面积约 165.7m²,用于暂存引发剂                                                                | 新建                                          | 与环评内容一致                             |
|      | 供水                 | 新鲜水年用量 1365866.0 m³/a                                                                        | 生产用水依托新浦化<br>学净水厂                           | 与环评内容一致                             |
|      | 脱盐水                | 1190958.0 m <sup>3</sup> /a                                                                  | 由新浦化学现有厂区<br>提供                             | 与环评内容一致                             |
|      | 排水 废水量共为 98693m³/a |                                                                                              | /                                           | 与环评内容一致                             |
| 公用工程 | 循环冷却水              | 13500m <sup>3</sup> /h                                                                       | 本次新建                                        | 与环评内容一致                             |
| 公用工作 | 蒸气                 | 50t/h                                                                                        | 由厂内管网供应                                     | 与环评内容一致                             |
|      | 氮气                 | 最大 1600 Nm³/h,正常 200Nm³/h                                                                    | 由新浦化学南厂 B 区氮气管网供给                           | 与环评内容一致                             |
|      | 仪表空气               | 正常 2800 Nm³/h ,最大 3500Nm³/h                                                                  | 本次新建空压站提供                                   | 与环评内容一致                             |
|      | 供电                 | 14335.156kw•h                                                                                | 由厂区新建 35kV 变<br>电站供应                        | 与环评内容一致                             |
| 环保工程 | 废水                 | 生产废水送新浦化学公司南厂区 A 区 PVC 离心母液处理系统预处理后回用;生活污水依托公司南厂区现有 1#有机污水处理站处理。                             | PVC 离心母液处理<br>系统正在建设中,1#<br>有机污水处理站依托<br>现有 | 废水处理措施与环评内容一致,PVC<br>离心母液处理系统已建成投运。 |
|      |                    | 新增2套旋风除尘器+水洗装置用于处理PVC干燥尾气                                                                    |                                             | 与环评内容一致                             |
|      | 废气                 | 新增7套袋式除尘装置用于处理PVC气力输送废气;新增6套袋式除尘装置用于处理PVC包装废气                                                | 本次新增                                        | 与环评内容一致                             |

| I | 程类别  | 项目内容                                               | 备注 | 实际建设情况  |
|---|------|----------------------------------------------------|----|---------|
|   |      | 新增两套二级活性炭吸附装置,分别用于处理聚合池废气<br>和危废库暂存废气              |    |         |
|   | 噪声   | 合理布局、基础减振、消声、隔声等措                                  | 施  | 与环评内容一致 |
|   | 固废处理 | 危险废物委托有资质单位处置,生活垃圾由环卫部门清运<br>处理。本次新建一座 128m² 危废仓库。 | 新建 | 与环评内容一致 |

本项目各建筑物建设情况见下表。

表 3.2-2 本项目主要建构筑物一览表

| 序<br>号 | 名称                 | 占地面积<br>( <b>m</b> ²) | 建筑面积<br>(m²) | 层数              | 结构型式            | 数<br>量 | 备注 |
|--------|--------------------|-----------------------|--------------|-----------------|-----------------|--------|----|
| 1      | PVC 变配电室           | 1682.16               | 6252.73      | 4               | 钢筋砼框架           | 1      | 新建 |
| 2      | PVC 仓库             | 6885.4                | 6885.4       | 1               | 门式刚架            | 1      | 新建 |
| 3      | 检修车间               | 234.24                | 293.76       | 1(局<br>部两<br>层) | 钢筋砼框架           | 1      | 新建 |
| 4      | 综合化学品仓库<br>(含危废仓库) | 624.16                | 624.16       | 1               | 钢筋混凝土框架         | 1      | 新建 |
| 5      | 控制室                | 1166.36               | 1166.36      | 1               | 剪力墙-钢筋砼框架       | 1      | 新建 |
| 6      | 人流门卫室              | 297.86                | 297.86       | 1               | 钢筋砼框架           | 1      | 新建 |
| 7      | 物流门卫室              | 154.12                | 154.12       | 1               | 钢筋砼框架           | 1      | 新建 |
| 8      | 冷冻站                | 380                   | 380          | 1               | 钢框架             | 1      | 新建 |
| 9      | 消防水站               | 290.82                | 290.82       | 1               | 钢筋砼框架           | 1      | 新建 |
| 10     | PVC 包装厂房           | 1724.82               | 4451.78      | 4               | 钢筋砼框架           | 1      | 新建 |
| 11     | 引发剂冷库              | 167                   | 167          | 1               | 门式刚架            | 1      | 新建 |
| 12     | 分散剂单元厂房            | 430.56                | 979.04       | 3               | 钢框架             | 1      | 新建 |
| 14     | 干燥单元厂房             | 1915.28               | 5788.12      | 4               | 钢筋砼框架,混<br>凝土排架 | 1      | 新建 |
| 15     | 聚合单元厂房             | 886.12                | 2875.1       | 4               | 钢框架             | 2      | 新建 |
| 16     | 事故消防水收集池           | 1147                  | 1147         | /               | 钢筋混凝土           | 1      | 新建 |
| 17     | 初期雨水池              | 204                   | 204          | /               | 钢筋混凝土           | 1      | 新建 |
| 18     | 清净雨水收集池            | 343                   | 343          | /               | 钢筋混凝土           | 1      | 新建 |

表 3.2-3 项目产品方案一览表

| 主体工程名称 |            |               | 设计能力(万 t/a) | 年运行时间<br>(h) | 实际建设情况 |  |
|--------|------------|---------------|-------------|--------------|--------|--|
| 2条聚合生产 | 聚氯乙烯 (PVC) |               | 50          | 8000         | 与环评内容一 |  |
| 线      | 包括         | 通用型 PVC<br>树脂 | 45.98       | 6816         | 致      |  |

| 主体工程名<br>称 | 产品名称及规格 |        | 设计能力(万 t/a) | 年运行时间<br>(h) | 实际建设情况 |
|------------|---------|--------|-------------|--------------|--------|
|            |         | 氯醋共聚树脂 | 2           | 592          |        |
|            |         | 消光树脂   | 1           | 444          |        |
|            |         | 低聚树脂   | 0.5         | 74           |        |
|            |         | 高聚树脂   | 0.5         | 74           |        |
|            |         | 等外品*   | 0.02        | /            |        |

注:等外品包括筛头料、地沟料、离心母液池底料、扫地料、设备清理料、布袋除尘设施集尘、PVC 离心母液处理系统预处理滤料。

本项目主要生产聚氯乙烯(PVC)产品,包括 SG1~SG8 型通用 PVC 树脂及少量特殊牌号树脂(氯醋共聚树脂、消光树脂、低聚树脂、高聚树脂)。其中通用型产品质量规格执行国标《悬浮法通用型聚氯乙烯树脂》(GB/T 5761-2018)优等品规格。实际建成后项目聚氯乙烯(PVC)各产品质量标准与环评报告中相关内容一致,具体见表 3.2-4~表 3.2-9。

表 3.2-4 《悬浮法通用型聚氯乙烯树脂》(GB/T 5761-2018)

| 项目                     | 牌号                  | SG1                | SG2                | SG3                | SG4                | SG5                | SG6               | SG7              | SG8              |
|------------------------|---------------------|--------------------|--------------------|--------------------|--------------------|--------------------|-------------------|------------------|------------------|
|                        | 数,(ml/g)<br>或 K 值 ) | 156~144<br>(77~75) | 143~136<br>(74~73) | 135~127<br>(72~71) | 126~119<br>(70~69) | 118~107<br>(68~66) | 106~96<br>(65~63) | 95~87<br>(62~60) | 86~73<br>(59~55) |
|                        | 平均聚合度)              | (1785~1536)        | (1535~1371)        | (1350~1250)        | (1250~1150)        | (1135~981)         | (980~846)         | (845~741)        | (740~650)        |
| 杂质                     | 粒子数,个,≤             | 16                 | 16                 | 16                 | 16                 | 16                 | 16                | 20               | 20               |
| 挥发物                    | (包括水)含<br>量%≤       | 0.3                | 0.3                | 0.3                | 0.3                | 0.40               | 0.40              | 0.40             | 0.40             |
| 筛余                     | 0.25mm<br>筛孔,≤      | 1.6                | 1.6                | 1.6                | 1.6                | 1.6                | 1.6               | 1.6              | 1.6              |
| 物%                     | 0.063mm<br>筛孔,≥     | 97                 | 97                 | 97                 | 97                 | 97                 | 97                | 97               | 97               |
| 表观领                    | 密度 g/ml,≥           | 0.45               | 0.45               | 0.45               | 0.47               | 0.48               | 0.5               | 0.52             | 0.52             |
| 残留                     | VCM,ppm,≤           | 5                  | 5                  | 5                  | 5                  | 5                  | 5                 | 5                | 5                |
|                        | 眼"数 个<br>400cm²≤    | 20                 | 20                 | 20                 | 20                 | 20                 | 20                | 30               | 30               |
|                        | 树脂的增塑剂<br>收量,g,≥    | 27                 | 27                 | 26                 | 23                 | 19                 | 15                | 12               | 12               |
| 白度(160°C,<br>10min)/%≥ |                     | 78                 | 78                 | 78                 | 78                 | 78                 | 78                | 75               | 75               |
|                        | 文物电导率,<br>(cm.g)≤,  | 5                  | 5                  | 5                  | _                  | _                  | _                 | _                | _                |

表 3.2-5 消光树脂产品质量标准

| 项目                           | 牌号                 | SD-7     | SD-10     | SD-13     |
|------------------------------|--------------------|----------|-----------|-----------|
|                              | K值                 | 57       | 65        | 72        |
| 平力                           | 均聚合度               | 700±70   | 1000±100  | 1300±150  |
|                              | 外观                 | 白色       | 白色        | 白色        |
|                              |                    | 30       | 30        | 30        |
| 挥发物(包                        | 包括水)含量%≤           | 0.3      | 0.3       | 0.3       |
| 粒径分布                         | 42 mesh pass,<br>≥ | 99.9     | 99.9      | 99.9      |
| 表观密度 g/ml, ≥                 |                    | 0.44~0.5 | 0.39~0.45 | 0.37`0.43 |
| 残留 VCM,ppm,≤                 |                    | 5        | 2         | 2         |
| "鱼眼"数 个/400cm <sup>2</sup> ≤ |                    | 30       | 30        | 30        |

### 表 3.2-6 氯醋共聚树脂产品质量标准

| 项目           | 牌号                       | MR       | ML        | МН        |
|--------------|--------------------------|----------|-----------|-----------|
|              | K 值                      | 58       | 67        | 75        |
| 7            | 立均聚合度                    | 800±50   | 1000±70   | 1500±100  |
|              | 外观                       | 白色       | 白色        | 白色        |
| 杂质           | <b>〔粒子数,个,≤</b>          | 30       | 30        | 30        |
| 挥发物(         | 〔包括水〕含量%≤                | 1.0      | 0.4       | 0.4       |
| 粒径分布         | 42 mesh pass, ≥          | 99.9     | 99.9      | 99.9      |
| 表观密度 g/ml, ≥ |                          | 0.54~0.6 | 0.53~0.59 | 0.47`0.53 |
| 残留           | ∛ VCM,ppm,≤              | 10       | 5         | 5         |
| "鱼眼"         | 数 个/400cm <sup>2</sup> ≤ | -        | -         | 50        |

## 表 3.2-7 高聚树脂产品质量标准

| 项目          | 牌号              | СК        | CR        | CL        | СМ        |
|-------------|-----------------|-----------|-----------|-----------|-----------|
|             | K值              | 80        | 83        | 92        | 97        |
|             | 平均聚合度           | 1800±100  | 2100±100  | 2500±100  | 2900±100  |
|             | 外观              | 白色        | 白色        | 白色        | 白色        |
| 杂           | 质粒子数,个,≤        | 30        | 30        | 30        | 30        |
| 挥发物         | (包括水)含量%≤       | 0.3       | 0.3       | 0.3       | 0.3       |
| 粒径<br>分布    | 42 mesh pass, ≥ | 99.9      | 99.9      | 99.9      | 99.9      |
| 表观密度 g/ml,≥ |                 | 0.39~0.45 | 0.37~0.45 | 0.37~0.45 | 0.37~0.45 |

| <b>牌号</b><br>项目               | СК | CR | CL | CM |
|-------------------------------|----|----|----|----|
| 残留 VCM,ppm,≤                  | 1  | 1  | 1  | 1  |
| "鱼眼"数 个/1000cm <sup>2</sup> ≤ | 20 | 20 | 20 | 20 |

表 3.2-8 低聚树脂产品质量标准

| 项目                           | 牌号              | S-450     | SG        |
|------------------------------|-----------------|-----------|-----------|
|                              | K 值             | 50        | 56        |
|                              | 平均聚合度           | 450±50    | 640±40    |
|                              | 外观              | 白色        | 白色        |
| 杂                            | ≓质粒子数,个,≤       | 16        | 16        |
| 挥发物                          | 」(包括水)含量%≤      | 0.4       | 0.3       |
| 粒径分布                         | 42 mesh pass, ≥ | 99.9      | 99.9      |
| 表                            | 观密度 g/ml,≥      | 0.55~0.61 | 0.54~0.60 |
| 残留 VCM,ppm,≤                 |                 | 10        | 5         |
| "鱼眼"数 个/400cm <sup>2</sup> ≤ |                 | -         | -         |

表 3.2-9 等外品质量标准

| 产品<br>项目     | 等外品      |
|--------------|----------|
| K 值          | 55~74    |
| 平均聚合度        | 650±1535 |
| 外观           | 白色       |
| 挥发物(包括水)含量%≤ | 0.5~27   |

# 3.3 主要生产设备

本项目建成后主要设备情况见下表。

表 3.3-1 项目主要设备清单一览表

| 序号 | 名称 (编号)               | 规格                      | 单位 | 数量 | 备注                 | 实际建设<br>情况  |
|----|-----------------------|-------------------------|----|----|--------------------|-------------|
|    | 聚合真空泵<br>CO-1101      | 900m³/h,出口常压            | 台  | 1  | 新建,                |             |
| 1  | 聚合真空泵分离器<br>CO-1101-2 | φ 600×1300              | 台  | 1  | 1,2 线共<br>用        | 与环评内容<br>一致 |
|    | 聚合真空泵内冷器<br>CO-1101-4 | 换热面积: 7.4m <sup>2</sup> | 台  | 1  | Ж                  |             |
|    | 二级回收泵<br>CO-1102      | 1000m³/h,出口<br>10kPaG   | 台  | 1  |                    |             |
| 2  | 二级回收泵循环泵<br>CO-1102-3 | /                       | 台  | 1  | 新建,<br>1,2 线共<br>用 | 与环评内容       |
|    | 二级回收泵分离器<br>CO-1102-2 | φ 600×1300              | 台  | 1  |                    | 一致          |
|    | 二级回收泵内冷器              | 换热面积: 7.4m <sup>2</sup> | 台  | 1  |                    |             |

|    | 名称 (编号)                                   | 规格                                        | 单位 | 数量 | 备注            | 实际建设<br>情况  |
|----|-------------------------------------------|-------------------------------------------|----|----|---------------|-------------|
|    | CO-1102-4                                 |                                           |    |    |               |             |
|    | 汽提真空泵<br>CO-1201/1202                     | 1000m³/h                                  | 台  | 2  |               |             |
| 3  | 汽提真空泵循环泵<br>CO-1201-3/2201-3              | /                                         | 台  | 2  |               |             |
| 3  | 汽提真空泵分离器<br>CO-1201-2/2201-2              | ф 600×1300                                | 台  | 2  |               |             |
|    | 汽提真空泵内冷器<br>CO-1201/2201                  | 换热面积: 7.4m <sup>2</sup>                   | 台  | 2  |               |             |
|    | 间断回收压缩机<br>CO-1301AB、CO-<br>2301AB        | 2300m <sup>3</sup> /h                     | 台  | 4  |               | 与环评内容       |
| 4  | 间断回收压缩机循环泵<br>CO-1301-3AB/CO-2301-<br>3AB | 流量: 21m³/h; 扬程:<br>20m;                   | 台  | 4  | 新建,           | 一致          |
|    | 间断回收压缩机分离器<br>CO-1301-2AB/2301-2AB        | /                                         | 台  | 2  | 分别对<br>应 1,2  | 实际建设 4<br>台 |
|    | CO-1301/2301 内冷器                          | φ400*4490;容积:<br>0.36m³;传热面积:<br>42.5 m²; | 台  | 2  | 应 1,2<br>线    | 实际建设4       |
|    | 连续回收压缩机<br>CO-1303/CO-2303                | 2300m <sup>3</sup> /h                     | 台  | 2  |               |             |
|    | 连续回收压缩机循环泵<br>CO-1303-3/2303-3            | 流量: 21m³/h; 扬程: 20m;                      | 台  | 2  |               |             |
| 5  | 连续回收压缩机分离器<br>CO-1303-2/2303-2            | /                                         | 台  | 2  |               | 与环评内容       |
|    | CO-1303/2303 内冷器                          | φ400×4490;容积:<br>0.36m³;传热面积:<br>42.5 m²; | 台  | 2  |               | 一致          |
| 6  | VCM 二级压缩机<br>CO-1310/CO-2310              | 150Nm <sup>3</sup> /h                     | 台  | 2  |               |             |
| 7  | 脱氧塔真空泵<br>CO-1001                         | 310m³/h                                   | 台  | 1  | 新建,           |             |
| 8  | 氮气压缩机<br>CO-1631AB                        | 180Nm³/h                                  | 台  | 2  | 1,2 线共        | 与环评内容<br>一致 |
| 9  | 聚合尾气风机<br>BL-1101                         | 5100Nm³/h                                 | 台  | 1  | Л             |             |
| 10 | 聚合抽真空风机<br>BL-1102、BL-2102                | 300Nm <sup>3</sup> /h                     | 台  | 2  |               |             |
| 11 | 纯水加料泵<br>PU-1001AB、PU-<br>2001AB          | 离心泵;390m³/h×45m                           | 台  | 4  | 新建,<br>分别对    | 与环评内容       |
| 12 | 脱氧脱盐水泵<br>PU-1003AB                       | 离心泵: 180m³/h×<br>71.6m                    | 台  | 2  | 应 1,2<br>线    | 一致          |
| 13 | 热脱盐水加料泵<br>PU-1005AB、PU-<br>2005AB        | 离心泵: 260m³/h×<br>154.8m                   | 台  | 4  | -             |             |
| 14 | 连续纯水泵 PU-<br>1006ABC                      | 离心泵; 170m3/h×60m                          | 台  | 3  | 新建,<br>1,2 线共 | 与环评内容<br>一致 |

| -<br>序<br>号 | 名称 (编号)                            | 规格                       | 単位 | 数量 | 备注                          | 实际建设<br>情况  |
|-------------|------------------------------------|--------------------------|----|----|-----------------------------|-------------|
|             |                                    |                          |    |    | 用                           |             |
| 15          | 热脱盐水循环泵<br>PU-1007AB、PU-<br>2007AB | 离心泵;210m³/h×30m          | 台  | 4  | 新建,<br>分别对<br>应 1,2<br>线    | 与环评内容<br>一致 |
| 16          | 机封水泵<br>PU-1009AB                  | 离心泵; 30m³/h×100m         | 台  | 2  | 新建,<br>1,2 线共               | 与环评内容       |
| 17          | 蒸汽凝液输送泵<br>PU-1010AB               | 离心泵;15m³/h×37.2m         | 台  | 2  | 用                           | 一致<br>      |
| 18          | VCM 加料泵<br>PU-1011AB、PU-<br>2011AB | 离心泵: 260m³/h×<br>134.3m  | 台  | 4  | 新建,                         | 上江江山京       |
| 19          | 聚合釜夹套循环泵<br>PU-1101、PU-2101        | 离心泵;200m³/h×30m          | 台  | 2  | 分别对<br>应 1,2                | 与环评内容<br>一致 |
| 20          | 消泡剂(FO)泵<br>PU-1102、PU-2102        | 计量泵: 0.402m³/h×<br>153m  | 台  | 2  | 线                           |             |
| 21          | 注水泵<br>PU-1104ABC                  | 离心泵;35m³/h×180m          | 台  | 3  | 新建,                         | 与环评内容       |
| 22          | 高压清洗泵<br>PU-1105                   | 往复泵; 18m³/h×最高<br>50MPaG | 台  | 1  | 1,2 线共用                     | 一致          |
| 23          | 浆料出料泵<br>PU-1106AB、PU-<br>2106AB   | 离心泵; 367m³/h×40m         | 台  | 4  | 新建,<br>分别对<br>应 1,2<br>线    |             |
| 24          | 分散剂输送泵<br>PU-1107AB                | 离心泵;60m³/h×38m           | 台  | 2  | 新建,<br>1,2 线共<br>用          | 与环评内容<br>一致 |
| 25          | 分散剂槽夹套循环泵<br>PU-1108ABC            | 离心泵; 90m³/h×20m          | 台  | 3  | 新建,<br>分别为<br>应<br>剂溶解<br>槽 |             |
| 26          | 分散剂(KA)加料泵<br>PU-1109、PU-2109      | 离心泵;42m³/h×45m           | 台  | 2  |                             |             |
| 27          | 分散剂(JC)加料泵<br>PU-1110、PU-2110      | 离心泵;12m³/h×40m           | 台  | 2  | 新建,<br>分别对                  | 与环评内容       |
| 28          | 分散剂(KB)加料泵<br>PU-1111、PU-2111      | 离心泵; 21m³/h×40m          | 台  | 2  | 应 1,2<br>线                  | 一致          |
| 29          | 分散剂(RB)加料泵<br>PU-1117、PU-2117      | 离心泵;16m³/h×45m           | 台  | 2  |                             |             |
| 30          | 聚合废水输送泵<br>PU-1115                 | 离心泵;50m³/h×82m           | 台  | 1  | 新建,<br>1,2 线共<br>用          | 与环评内容<br>一致 |
| 31          | 浆料输送泵<br>PU-1116AB、PU-<br>2116AB   | 离心泵; 376m³/h×20m         | 台  | 4  | 新建, 分别对                     | 与环评内容       |
| 32          | 聚合釜清洗泵<br>PU-1118、PU-2118          | 离心泵;120m³/h× 最<br>高 367m | 台  | 2  | 应 1,2<br>线                  | 一致          |

|    | 名称 (编号)                              | 规格                           | 单位 | 数量 | 备注                         | 实际建设<br>情况  |
|----|--------------------------------------|------------------------------|----|----|----------------------------|-------------|
| 33 | 防粘釜剂(NS)桶泵<br>PU-1120、PU-2120        | 气动泵; 3m³/h×20m               | 台  | 2  |                            |             |
| 34 | 添加剂桶泵<br>PU-1121、PU-2121             | 气动泵;3m³/h×20m                | 台  | 2  |                            |             |
| 35 | 抗氧剂(HK)桶泵<br>PU-1122                 | 气动泵;3m³/h×20m                | 台  | 1  |                            |             |
| 36 | 消光剂(EB)加料泵<br>PU-1123                | 气动泵; 3.5m³/h×50m             | 台  | 1  | 新建,1                       | 与环评内容       |
| 37 | LA 加料泵<br>PU-1124                    | 隔膜泵; 0.32m³/h×<br>160m       | 台  | 1  | 线用                         | 一致          |
| 38 | 抗氧剂(HK)加料泵<br>PU-1127                | 计量泵; 0.9m³/h×40m             | 台  | 1  |                            |             |
| 39 | 冷剂泵<br>PU-1132AB                     | 离心泵;12m³/h×40m               | 台  | 2  | 新建,                        | 与环评内容       |
| 40 | 引发剂冷剂制冷系统<br>SP-1131AB               | 制冷剂: R507; 设计<br>工况制冷量 169KW | 台  | 2  | 1,2 线共                     | 一致          |
| 41 | VAM 加料泵<br>PU-1135                   | 离心泵;46m³/h×80m               | 台  | 1  | 新建,1                       | 与环评内容       |
| 42 | R-VAM 加料泵<br>PU-1212                 | 离心泵; 46m³/h×80m              | 台  | 1  | 线用                         | 一致          |
| 43 | 聚合废水输送泵<br>PU-1136、PU-2136           | 离心泵;8m³/h×20m                | 台  | 2  |                            |             |
| 44 | 消泡剂(FO)泵<br>PU-1137、PU-2137          | 隔膜泵; 0.32m³/h×<br>150m       | 台  | 2  |                            |             |
| 45 | 汽提进料泵<br>PU-1201AB、PU-<br>2201AB     | 离心泵; 121m³/h×70m             | 台  | 4  |                            |             |
| 46 | 浆料循环泵<br>PU-1202AB、PU-<br>2202AB     | 离心泵; 180m³/h×30m             | 台  | 4  |                            |             |
| 47 | 汽提出料泵<br>PU-1203AB、PU-<br>2203AB     | 离心泵;145m³/h×70m              | 台  | 4  | 新建,                        |             |
| 48 | 汽提热水泵<br>PU-1204AB、PU-<br>2204AB     | 离心泵; 238m³/h×35m             | 台  | 4  | 分别对<br>应 1,2<br>线          | 与环评内容<br>一致 |
| 49 | DPW 冲洗水泵<br>PU-1206、PU-2206          | 离心泵;<br>360m³/h×100m         | 台  | 2  | <b>1 1 1 1 1 1 1 1 1 1</b> |             |
| 50 | DPW 泵<br>PU-1207/PU-2207             | 离心泵;<br>120m³/h×51.6m        | 台  | 2  |                            |             |
| 51 | R-VCM 加料泵<br>PU-1301AB、PU-<br>2301AB | 密封泵; 130m³/h×<br>134.3m      | 台  | 4  |                            |             |
| 52 | 阻聚剂泵<br>PU-1302AB、PU-<br>2302AB      | 往复泵; 0.013m³/h×<br>100m      | 台  | 4  |                            |             |
| 53 | 阻聚剂泵<br>PU-1305AB、PU-<br>2305AB      | 往复泵; 0.013m³/h×<br>100m      | 台  | 4  |                            |             |

| -<br>序<br>号 | 名称 (编号)                                      | 规格                                  | 单位 | 数量 | 备注                       | 实际建设<br>情况  |
|-------------|----------------------------------------------|-------------------------------------|----|----|--------------------------|-------------|
| 54          | 阻聚剂泵<br>PU-1306、PU-2306                      | 往复泵; 0.013m³/h×<br>100m             | 台  | 2  |                          |             |
| 55          | 阻聚剂泵<br>PU-1309、PU-2309                      | 往复泵; 0.013m³/h×<br>100m             | 台  | 2  |                          |             |
| 56          | R-VCM 输送泵<br>PU-1303AB、PU-<br>2303AB         | 密封泵; 45m³/h×42m                     | 台  | 4  |                          |             |
| 57          | 废水加料泵<br>PU-1304AB                           | 离心泵;25m³/h×35m                      | 台  | 2  | 新建,<br>1,2 线共<br>用       | 与环评内容<br>一致 |
| 58          | 废水输送泵<br>PU-1307AB                           | 离心泵; 28m³/h×95.9m                   | 台  | 2  | 新建,<br>1,2 线共<br>用       | 与环评内容<br>一致 |
| 59          | 脱盐水槽<br>VE-1001                              | 容积: 441m³;<br>φ7500×10000           | 台  | 1  | 新建,<br>1,2 线共<br>用       | 与环评内容<br>一致 |
| 60          | 热脱盐水槽<br>VE-1002、VE-2002                     | 容积: 88.6m³;<br>φ3600×7500           | 台  | 2  | 新建,<br>分别对               | 与环评内容       |
| 61          | VCM 加料罐<br>VE-1003、VE-2003                   | 容积: 99m³;<br>φ3800×7500             | 台  | 2  | 应 1,2<br>线               | 一致          |
| 62          | 机封水槽<br>VE-1006                              | 容积: 14.7m³;<br>φ2500×3000           | 台  | 1  | 新建,<br>1,2 线共<br>用       | 与环评内容<br>一致 |
| 63          | 聚合釜<br>RE-1101ABCD、RE-<br>2101ABCD           | 容积: 130m³;<br>φ:4500×6900           | 台  | 8  |                          |             |
| 64          | 聚合紧急终止剂罐<br>VE-1101-3ABCD<br>VE-2101-3ABCD   | 容积: 2.25m³;<br>φ1100×2000           | 台  | 8  |                          |             |
| 65          | 聚合釜搅拌器<br>MX-1101ABCD<br>MX-2101ABCD         | 桨式; 1254mm; 3 桨<br>叶 ⋈ 层 117/59 rpm | 台  | 8  | 新建,                      |             |
| 66          | 聚合釜搅拌减速齿轮箱<br>MX-1101-1ABCD<br>MX-2101-1ABCD | /                                   | 台  | 8  | 分别对<br>应 1,2<br>线 8 台    | 与环评内容<br>一致 |
| 67          | 聚合釜搅拌油压单元<br>MX-1101ABCD<br>MX-2101ABCD      | /                                   | 台  | 8  | 聚合釜                      |             |
| 68          | 聚合釜搅拌紧急驱动器<br>SP-1104ABCD<br>SP-2104ABCD     | N <sub>2</sub> 驱动,20rpm             | 台  | 8  |                          |             |
| 69          | 聚合回流冷凝器<br>HE-1105ABCD<br>HE-2105ABCD        | 换热面积: 300m²                         | 台  | 8  |                          |             |
| 70          | 消泡剂(FO)储槽<br>VE-1102、VE-2102                 | 容积: 1.6m³;<br>φ1000×1700            | 台  | 2  | 新建,<br>分别对<br>应 1,2<br>线 | 与环评内容<br>一致 |
| 71          | 真空泵排液罐<br>VE-1105                            | 容积: 0.09m³;<br>φ600×1000            | 台  | 1  | 新建,                      | 与环评内容       |

| -<br>序<br>号 | 名称 (编号)                             | 规格                             | 単位 | 数量 | 备注           | 实际建设<br>情况                       |
|-------------|-------------------------------------|--------------------------------|----|----|--------------|----------------------------------|
| 72          | 分散剂料斗<br>VE-1107ABC                 | 容积: 6.0m³;<br>φ1800×2000       | 台  | 3  | 1,2 线共<br>用  | 一致                               |
|             | 分散剂溶解槽<br>VE-1108ABC                | 容积: 40.5m³;<br>φ3250×4300      | 台  | 3  | 714          |                                  |
| 73          | 分散剂溶解槽搅拌器<br>VE-1108ABC             | 2 桨叶×3<br>层;60~148RPM          | 台  | 3  |              | 编号调整为<br>MX-<br>1108ABC,<br>其他一致 |
| 74          | 分散剂(KA)储槽<br>VE-1109                | 容积: 90m³;<br>φ4600×5600        | 台  | 1  |              |                                  |
| 75          | 分散剂(JC)储槽<br>VE-1110                | 容积: 90m³;<br>φ4600×5600        | 台  | 1  |              | 与环评内容                            |
| 76          | 分散剂(KB)储槽<br>VE-1111                | 容积: 90m³;<br>φ4600×5600        | 台  | 1  |              | 一致                               |
| 77          | 分散剂(RB)储槽<br>VE-1117                | 容积: 90m³;<br>φ4600×5600        | 台  | 1  |              |                                  |
| <b>5</b> 0  | 中和剂储槽<br>VE-1112、VE-2112            | 容积: 12m³;<br>φ2000×4500        | 台  | 2  |              |                                  |
| 78          | 中和剂储槽搅拌器<br>MX-1112、MX-2112         | 螺旋桨式; 3 螺旋桨×l<br>层; 300RPM     | 台  | 2  |              |                                  |
|             | 添加剂储槽<br>VE-1113、VE-2113            | 容积: 12m³;<br>φ2000×4500        | 台  | 2  |              |                                  |
| 79          | 添加剂储槽搅拌器<br>MX-1113、MX-2113         | 螺旋桨式; 3 螺旋桨×1<br>层; 50RPM      | 台  | 2  |              |                                  |
| 80          | 添加剂计量槽<br>VE-1134、VE-2134           | 容积: 0.22m³;<br>φ500×900        | 台  | 2  |              |                                  |
| 81          | 油雾分离器<br>VE-1114、VE-2114            | φ 600×1200                     | 台  | 2  | 新建,          |                                  |
| 82          | VCM 旋风分离器 VE-<br>1115、VE-2115       | φ 600×900/φ600×500             | 台  | 2  | 分别对<br>应 1,2 | 与环评内容<br>一致                      |
| 83          | 高压出料槽<br>VE-1116AB、VE-<br>2116AB    | 容积: 229.1m³;<br>φ5000×10000    | 台  | 4  | 线            |                                  |
| - 63        | 高压出料槽搅拌器<br>MX-1116AB、MX-<br>2116AB | 平面式; 2 桨叶 ∕2 层;<br>106RPM      | 台  | 4  |              |                                  |
| 0.4         | 低压出料槽<br>VE-1118、VE-2118            | 容积: 339.3m³;<br>φ6000×10000    | 台  | 2  |              |                                  |
| 84          | 低压出料槽搅拌器<br>MX-1118、MX-2118         | 平面式; 2 桨叶×2 层;<br>83RPM        | 台  | 2  |              |                                  |
| 85          | 防粘釜剂(NS)储槽<br>VE-1121、VE-2121       | 容积: 2.7m³;<br>φ1200×2000       | 台  | 2  |              |                                  |
| 9.6         | 消光剂(EB)储槽<br>VE-1123                | 容积: 6.3m³;<br>φ1800×2250       | 台  | 1  |              |                                  |
| 86          | 消光剂(EB)储槽搅拌<br>器 MX-1123            | Phaudler 式; 3 桨叶×l<br>层; 50RPM | 台  | 1  | 新建,          | 与环评内容                            |
| 87          | LA 储槽<br>VE-1124                    | 容积: 1.21m³;<br>φ900×1800       | 台  | 1  | 1 线用         | 一致                               |
| 88          | 抗氧剂(HK)储槽                           | 容积: 1.27m³;                    | 台  | 1  |              |                                  |

|     | 名称 (编号)                        | 规格                         | 单位 | 数量 | 备注                       | 实际建设<br>情况                       |
|-----|--------------------------------|----------------------------|----|----|--------------------------|----------------------------------|
|     | VE-1127                        | φ1000×1450                 |    |    |                          |                                  |
|     | 抗氧剂(HK)储槽搅拌<br>器<br>MX-1127    | 螺旋桨式; 3 螺旋桨×1<br>层; 136RPM | 台  | 1  |                          |                                  |
|     | 引发剂 F、G、H 储槽<br>VE-1131ABC     | 容积: 2.5m³;<br>φ1200×2000   | 台  | 3  | 新建,                      | 与环评内容<br>一致                      |
| 89  | 引发剂 F、G、H 储槽搅<br>拌器 VE-1131ABC | 螺旋桨式; 3 螺旋桨×1<br>层;136RPM  | 台  | 3  | 1,2 线共用                  | 编号调整为<br>MX-<br>1131ABC,<br>其他一致 |
| 90  | 引发剂计量槽<br>VE-1132、VE-2132      | 容积: 0.22m³;<br>φ500×900    | 台  | 2  | 新建,<br>分别对<br>应 1,2<br>线 | 与环评内容<br>一致                      |
| 91  | 冷剂槽 VE-1133                    | 容积: 6.5 m³;<br>φ2000×2000  | 台  | 1  | 新建,<br>1,2 线共<br>用       | 与环评内容<br>一致                      |
| 92  | VAM 储槽 VE-1135                 | 容积: 21.2m³;<br>φ3000×3000  | 台  | 1  |                          |                                  |
| 93  | 回收 VAM 分离罐<br>VE-1211          | 容积: 13.1m³;<br>φ2000×3500  | 台  | 1  | 新建,                      | 与环评内容                            |
| 94  | 回收 VAM 储槽<br>VE-1212           | 容积: 13.1m³;<br>φ2000×3500  | 台  | 1  | 1线用                      | 一致                               |
| 95  | 回收 VAM 阻聚剂罐<br>VE-1214         | 容积: 0.03m³;<br>DN250×500   | 台  | 1  |                          |                                  |
| 96  | 聚合废水槽<br>VE-1136、VE-2136       | 容积: 3.84m³;<br>φ1200×3000  | 台  | 2  |                          |                                  |
| 07  | 浆料槽<br>VE-1202、VE-2202         | 容积: 182.4m³;<br>φ5800×6300 | 台  | 2  |                          |                                  |
| 97  | 浆料槽搅拌器<br>MX-1202、MX-2202      | 平面式; 2 桨叶×2 层;<br>100RPM   | 台  | 2  | 新建,                      |                                  |
| 98  | 汽提热水槽<br>VE-1204、VE-2204       | 容积: 65m³;<br>φ4400×4800    | 台  | 2  | 分别对<br>应 1,2             | 与环评内容<br>一致                      |
| 99  | DPW 槽<br>VE-1209、VE-2209       | 容积: 183m³;<br>φ5900×6000   | 台  | 2  | 线                        |                                  |
| 100 | R-VCM 倾析器<br>VE-1301、VE-2301   | 容积: 55.2m³;<br>φ3200×5800  | 台  | 2  |                          |                                  |
| 101 | R-VCM 槽<br>VE-1302、VE-2302     | 容积: 99m³;<br>φ3800×7500    | 台  | 2  |                          |                                  |
| 102 | 阻聚剂配制槽<br>VE-1303              | 容积: 2.9m³;<br>φ1500×1500   | 台  | 1  |                          |                                  |
| 103 | 阻聚剂储槽<br>VE-1304               | 容积: 2.9m³;<br>φ1500×1500   | 台  | 1  | 新建,                      | 与环评内容                            |
| 104 | 废水槽<br>VE-1305                 | 容积: 69m³;<br>φ3500×6000    | 台  | 1  | 1,2 线共<br>用              | 一致                               |
| 105 | 残液分离器<br>VE-1306               | 容积: 0.24m³;<br>φ500×1200   | 台  | 1  |                          |                                  |
| 106 | 尾气(WG)缓冲槽<br>VE-1307、VE-2307   | 容积: 15.3m³;<br>φ2000×4200  | 台  | 2  | 新建,<br>分别对               | 与环评内容<br>一致                      |

|     | 名称 (编号)                         | 规格                                                  | 单位 | 数量 | 备注                       | 实际建设<br>情况  |
|-----|---------------------------------|-----------------------------------------------------|----|----|--------------------------|-------------|
| 107 | VCM 气体缓冲罐<br>VE-1308、VE-2308    | 容积: 44.5m³;<br>φ3000×5300                           | 台  | 2  | 应 1,2<br>线               |             |
| 108 | R-VCM 槽排水罐<br>VE-1310、VE-2310   | ф 500×1250                                          | 台  | 2  |                          |             |
| 109 | R-VCM 缓冲罐<br>VE-1311、VE-2311    | Ф 3500×5300                                         | 台  | 2  |                          |             |
| 110 | 2MPaG 氮气储槽<br>VE-1631           | 容积: 112.2m³;<br>φ3500×10500                         | 台  | 1  | 新建,<br>1,2 线共<br>用       | 与环评内容<br>一致 |
| 111 | 脱盐水加热器<br>HE-1001               | 换热面积: 38m²                                          | 台  | 1  | 新建,<br>1,2 线共<br>用       | 与环评内容<br>一致 |
| 112 | 热脱盐水加热器<br>HE-1002、HE-2002      | 换热面积: 216m <sup>2</sup>                             | 台  | 2  | 新建,<br>分别对<br>应 1,2<br>线 | 与环评内容<br>一致 |
| 113 | 机封水冷却器<br>HE-1003               | 板式, 换热面积: 20m²                                      | 台  | 1  |                          |             |
| 114 | SA 溶液循环冷却器<br>HE-1101ABC        | 板式;换热面积: 60m²                                       | 台  | 3  | 新建,                      |             |
| 115 | 分散剂(JC)冷却器<br>HE-1102           | 板式;换热面积:<br>2.2m <sup>2</sup>                       | 台  | 1  | 1,2 线共                   | 与环评内容<br>一致 |
| 116 | 分散剂(KB)冷却器<br>HE-1103           | 板式;换热面积:<br>2.2m <sup>2</sup>                       | 台  | 1  | /11                      |             |
| 117 | 分散剂(RB)冷却器<br>HE-1104           | 板式;换热面积:<br>2.2m <sup>2</sup>                       | 台  | 1  |                          |             |
| 118 | 浆料换热器<br>HE-1201、HE-2201        | 螺旋式;换热面积:<br>180m²                                  | 台  | 2  |                          |             |
| 119 | 汽提冷凝器<br>HE-1202、HE-2202        | 螺旋式;换热面积:<br>20m <sup>2</sup>                       | 台  | 2  |                          |             |
| 120 | 一段汽提总冷凝器<br>HE-1203-1、HE-2203-1 | 螺旋式;换热面积:<br>50m <sup>2</sup>                       | 台  | 2  |                          |             |
| 121 | 二段汽提总冷凝器<br>HE-1203-2、HE-2203-2 | 螺旋式;换热面积:<br>90m <sup>2</sup>                       | 台  | 2  | 新建,<br>分别对               | 与环评内容       |
| 122 | VAM 冷凝器<br>HE-1208、HE-2208      | 换热面积: 167m²                                         | 台  | 2  | 应 1,2<br>线               | 一致          |
| 123 | R-VCM 冷凝器<br>HE-1301、HE-2301    | 换热面积: 744m²                                         | 台  | 2  | <b>以</b>                 |             |
| 124 | R-VCM 尾气冷凝器<br>HE-1302、HE-2302  | 换热面积: 45m²                                          | 台  | 2  |                          |             |
| 125 | R-VCM 冷却器<br>HE-1303、HE-2303    | 换热面积: 27.9m <sup>2</sup> ;<br>管数: 120; 管间距:<br>32mm | 台  | 2  |                          |             |
| 126 | 废水换热器<br>HE-1304                | 螺旋式;换热面积;<br>20m <sup>2</sup>                       | 台  | 1  | - 华 <i>z</i> +           |             |
| 127 | 废水汽提塔顶冷凝器<br>HE-1305            | 换热面积: 14m²; 管<br>数: 92; 管间距:<br>32mm                | 台  | 1  | 新建,<br>1,2 线共<br>用       | 与环评内容<br>一致 |
| 128 | VAM 废水冷凝器                       | 换热面积: 1.85m <sup>2</sup>                            | 台  | 1  |                          |             |

|     | 名称 (编号)                              | 规格                                                                    | 单位 | 数量 | 备注                                                                                               | 实际建设<br>情况  |
|-----|--------------------------------------|-----------------------------------------------------------------------|----|----|--------------------------------------------------------------------------------------------------|-------------|
|     | HE-1311                              |                                                                       |    |    |                                                                                                  |             |
| 129 | R-VCM 二级冷凝器 HE-<br>1310、HE-2310      | 换热面积: 82m²                                                            | 台  | 2  | 新建,<br>分别对<br>应 1,2<br>线                                                                         | 与环评内容<br>一致 |
| 130 | VCM 加料过滤器<br>FL-1101AB、FL-<br>2101AB | 筒式;介质: VCM;<br>流量: 278m³/h 聚丙烯<br>填料;过滤精度 10μ"                        | ኅ  | 4  | 新建,<br>分别对<br>应 1,2<br>线                                                                         | 与环评内容<br>一致 |
| 131 | 高压清洗过滤器 FL-<br>1102                  | 金属丝网,斗式;介质:水;流量:21m³/h<br>600ID×1,000TL;<br>100mesh wire              | 台  | 1  | 新建,<br>1,2 线共<br>用                                                                               | 与环评内容<br>一致 |
| 132 | 浆料过滤器<br>FL-1103AB、FL-<br>2103AB     | 金属丝网, 斗式; 介<br>质: 浆料; 流量:<br>367m³/h600ID x<br>1,500TL; φ450 金属冲<br>孔 | 台  | 4  |                                                                                                  |             |
| 133 | NS 过滤器<br>FL-1104、FL-2104            | 筒式;介质:有机液体;流量:270~340L/h<br>聚丙烯填料;过滤精度<br>10μ                         | 台  | 2  | 新建,<br>分别对                                                                                       | 与环评内容<br>一致 |
| 134 | 中压蒸汽过滤器<br>FL-1106、FL-2106           | 筒式;介质:蒸汽;流量:2000/2500kg/h;过滤面积:7 m²;纤维烧结毡;过滤精度10 μ m                  | 台  | 2  | が<br>対<br>が<br>が<br>が<br>が<br>が<br>が<br>が<br>が<br>が<br>が<br>が<br>が<br>が<br>が<br>が<br>が<br>が<br>が |             |
| 135 | 浆料汽提过滤器<br>FL-1205AB、FL-<br>2205AB   | 金属丝网, 斗式; 介<br>质: 浆料; 流量:<br>110m³/h450ID x<br>1,200TL; φ350 金属冲<br>孔 | 台  | 4  |                                                                                                  |             |
| 136 | 废水过滤器<br>FL-1301AB                   | 金属丝网,斗式;介<br>质:水;流量:<br>10m³/h;过滤精度:<br>60mesh                        | 台  | 2  | 新建,<br>1,2 线共<br>用                                                                               | 与环评内容<br>一致 |
| 137 | 分散剂旋转加料器 SP-<br>1107ABC              | 旋转量:1,000 kg/h;<br>VVVF 控制                                            | 台  | 3  | 新建, 1,2 线共                                                                                       | 与环评内容       |
| 138 | 清洗喷枪 SP-1109                         | 流量:21m³/h x<br>ax.33MPaG                                              | 台  | 1  | 用                                                                                                | 一致          |
| 139 | 汽提塔<br>TW-1201、TW-2201               | ф:3700×13560                                                          | 台  | 2  | 新建,<br>分别对<br>应 1,2<br>线                                                                         | 与环评内容<br>一致 |
| 140 | 废水汽提塔<br>TW-1301                     | ф 1350×3127                                                           | 台  | 1  | 新建,                                                                                              | 与环评内容       |
| 141 | 脱氧塔<br>TW-1001                       | Ф 2100×8700                                                           | 台  | 1  | 1,2 线共<br>用                                                                                      | 一致          |
| 142 | 离心机<br>SP-1201ABC SP-                | 2060 转/分                                                              | 台  | 6  | 新建,                                                                                              | 与环评内容       |

| 序号  | 名称 (编号)                                  | 规格                                                                | 单位 | 数量 | 备注                | 实际建设<br>情况   |
|-----|------------------------------------------|-------------------------------------------------------------------|----|----|-------------------|--------------|
|     | 2201ABC                                  |                                                                   |    |    | 分别对               | 一致           |
| 143 | 回收水槽<br>VE-1215、VE-2215                  | ф 5200×6000                                                       | 台  | 2  | 应 1,2<br>线        |              |
| 144 | 离心母液外送泵<br>PU-1209、PU-2209               | 离心泵; 120m³/h×<br>77.3m;                                           | 台  | 2  |                   |              |
| 145 | 洗涤塔水槽<br>VE-1406、VE-2406                 | 容积: 14.7m³: Φ<br>2400×3800                                        | 台  | 2  |                   |              |
| 146 | 洗涤水循环泵<br>PU-1406A/B、PU-<br>2406A/B      | 离心泵; 120m³/h×<br>46.5m                                            | 台  | 4  |                   |              |
| 147 | 空气过滤器<br>FL-1403、FL-2403                 | 流量 1107349kg/h                                                    | 台  | 2  |                   |              |
| 148 | 空气预热器<br>HE-1401、HE-2401                 | 外壳: 304<br>管道: 304/铝翅片管                                           | 台  | 2  |                   |              |
| 149 | 干燥空气鼓风机<br>BL-1401、BL-2401               | 设计流量:<br>110000kg/h; 额定功<br>率: 400kW; 转速:<br>1490RPM; 启动方式:<br>变频 | 台  | 2  |                   | 与环评内容<br>一致  |
| 150 | 干燥空气加热器<br>HE-1402、HE-2402               | 外壳: 304<br>管道: 304/铝翅片管                                           | 台  | 2  |                   |              |
| 151 | 柱塞流空气加热器<br>HE-1403、HE-2403              | 外売: 304<br>管道: 304/铝翅片管                                           | 台  | 2  |                   |              |
| 152 | 干燥热水循环泵<br>PU-1404A/B、PU-<br>2404A/B     | 流量 1180m3/h<br>出口压力 0.5MPaG                                       | 台  | 4  | 新建,               |              |
| 153 | 干燥热水加热器<br>HE-1405、HE-2405               | 换热面积: 291.7 m²;<br>介质: 蒸汽、水; 管<br>数: 847                          | 台  | 2  | 分别对<br>应 1,2<br>线 |              |
| 154 | 干燥热水膨胀槽<br>VE-1403、VE-2403               | 容积 1m3;                                                           | 台  | 2  |                   |              |
| 155 | 旋转加料器<br>RVD-1401AB、RVD-<br>2401AB       | 流体介质: PVC; 额定<br>功率: 5.5kW; 转速:<br>1446RPM; 启动方式:<br>变频           | 台  | 4  |                   | 与环评内容<br>一致  |
| 156 | 滤饼震荡加料器<br>CV-1401A/B/C、CV-<br>2401A/B/C | 流体介质: PVC 湿滤<br>饼; 额定功率:<br>0.5kW; 转速:<br>980RPM; 启动方式:<br>直启     | 台  | 6  |                   |              |
| 157 | 流化床干燥器<br>DR-1401、DR-2401                | 流化床:<br>K67 产品干基产量<br>34.5t/h,                                    | 台  | 2  |                   |              |
| 158 | 蒸汽凝液收集槽<br>VE1206                        | 容积: 17.2m³; 尺寸:<br>Φ2400×4720                                     | 台  | 1  | 新建,               | L 17 \0; L & |
| 159 | 凝液槽顶部冷凝器<br>HE-1206                      | 换热面积: 70.7 m²; 介<br>质:循环水、蒸汽                                      | 台  | 1  | 1,2 线共            | 与环评内容<br>一致  |
| 160 | 蒸汽凝液输送泵                                  | 离心泵: 50m³/h×35m                                                   | 台  | 2  |                   |              |

| ·<br>序<br>号 | 名称 (编号)                              | 规格                                                                | 单位      | 数量 | 备注                  | 实际建设<br>情况  |  |
|-------------|--------------------------------------|-------------------------------------------------------------------|---------|----|---------------------|-------------|--|
|             | PU-1205A/B                           |                                                                   |         |    |                     |             |  |
| 161         | 减温水泵<br>PU-1215A/B                   | 离心泵; 9m³/h×<br>127.4m                                             | 台       | 2  |                     |             |  |
| 162         | 粉料排放阀<br>VRY-1402A/B、VRY-<br>2402A/B | 流体介质: s-PVC,流<br>量: 2297kg/h; 额定功<br>率: 0.75kW; 转速:<br>1450RPM;   | 页定功 台 2 |    |                     | 实际建设4       |  |
| 163         | 产品排放旋转阀<br>VRY-1401A/B、VRY-<br>01A/B | 流体介质: s-PVC,流<br>量: 19892kg/h; 额定<br>功率: 1.5kW; 转速:<br>1450RPM;   | 台       | 4  | 新建,<br>分别对<br>应 1,2 |             |  |
| 164         | 干燥空气排风机<br>BL-1402、BL-2402           | 设计流量:<br>125000kg/h; 额定功<br>率: 500kW; 转速:<br>1490RPM; 启动方式:<br>变频 | 台       | 2  |                     |             |  |
| 165         | 干燥输送风机<br>BL-1204A/B、BL-2204         | 风机参数:入口流量:<br>7800N 功率: 400kW                                     | 台       | 3  | 线                   | 与环评内容<br>一致 |  |
| 166         | 除尘器风机<br>BL-1205/2205                | 风量 600m³/h, 升压<br>8kPa, 功率 2.2KW,                                 | 台       | 2  |                     |             |  |
| 167         | 输送料斗除尘器<br>FL-1204、FL-2204           | 气体流量:~600Nm³/h,<br>滤芯材质:聚酯;过滤<br>面积:11m2,过滤效<br>率及精度99.9%@5μm     | 台       | 2  |                     |             |  |
| 168         | 输送旋转阀<br>SP-1204、SP-2204             | DN500;变频减速电<br>机,转速 15~20rpm,功<br>率 2.2kW                         | 台       | 2  |                     |             |  |
| 169         | 料仓<br>01V-0701ABCDEFG                | 材质 SS304,容积<br>615m³,设计压力:<br>2kpa;设计温度:<br>70℃;                  | 台       | 7  | 新建,<br>对应 1,2<br>线  | 与环评内容<br>一致 |  |

# 3.4 主要原辅材料

本项目建成后原辅材料及能源消耗情况具体见下表。

表 3.4-1 项目主要原辅料及能源消耗一览表

| 类别 | 名称                        | 重要组分、规<br>格、指标                    | 年耗量       | 性状   | 包装方式    | 实际建设情况      |
|----|---------------------------|-----------------------------------|-----------|------|---------|-------------|
|    | 氯乙烯                       | 氯乙烯(≥<br>99.98%)                  | 500000t/a | 气态 / |         | 与环评报告一<br>致 |
| 原料 | 引发剂<br>TRIGONOX<br>23-C75 | 过氧化新戊酸<br>叔-丁酯,75%<br>无嗅石油精溶<br>液 | 450t/a    | 液态   | 25kg 桶装 | 与环评报告一<br>致 |

| 类别 | 名称                         | 重要组分、规<br>格、指标                          | 年耗量                 | 性状 | 包装方式     | 实际建设情况      |
|----|----------------------------|-----------------------------------------|---------------------|----|----------|-------------|
|    | 引发剂<br>TRIGONOX<br>99-C75  | 过氧化新癸酸<br>异丙基苯酯,<br>75%无嗅石油精<br>溶液      |                     | 液态 | 25kg 桶装  | 与环评报告一<br>致 |
|    | 引发剂<br>TRIGONOX<br>125-C75 | 过氧化新戊酸<br>叔戊酯,75%无<br>嗅石油精溶液            |                     | 液态 | 25kg 桶装  | 与环评报告一<br>致 |
|    | 分散剂                        | 聚乙烯醇(> 94%)                             | 550t/a              | 固态 | 25kg 袋装  | 与环评报告一<br>致 |
|    | 防粘釜剂                       | 甲醛与 1-萘酚<br>的共聚物                        | 85t/a               | 液态 | 25kg 桶装  | 与环评报告一<br>致 |
|    | 终止剂                        | 复合高效环保<br>终止剂 MC-<br>105W               | 400t/a              | 液体 | 200kg 桶装 | 与环评报告一<br>致 |
|    | 聚醚消泡剂                      | 聚醚消泡剂<br>MC-202                         | 17.5t/a 液体 200kg 桶装 |    | 200kg 桶装 | 与环评报告一<br>致 |
|    | 乙酸乙烯酯                      | 醋酸乙烯酯单<br>体(含稳定剂<br>HQ)                 | 886.3t/a            | 液体 | 1t 桶装    | 与环评报告一<br>致 |
|    | VCM 回收<br>中和剂              | 氢氧化钙                                    | 29t/a               | 固态 | 25kg 袋装  | 与环评报告一<br>致 |
|    | 消光剂                        | 丙烯酸聚乙二<br>醇酯                            | 6400t/a             | 液态 | 200kg 桶装 | 与环评报告一<br>致 |
|    | 链转移剂                       | 2-巯基乙醇                                  | 5.15t/a             | 液态 | 200kg 桶装 | 与环评报告一<br>致 |
|    | 扩链剂                        | 3-(3,5-二叔丁基<br>-4-羟基苯基)丙<br>酸正十八烷醇<br>酯 | 0.6t/a              | 液态 | 200kg 桶装 | 与环评报告一<br>致 |
|    | 紧急终止剂                      | 4-羟基-2,2,6,6-<br>四甲基哌啶-1-<br>氧自由基       | F基哌啶-1- 1.2t/a 液态   |    | 25kg 桶装  | 与环评报告一<br>致 |
|    | 阻聚剂                        | 对苯二酚                                    | 2.16t/a             | 固态 | 20kg 袋装  | 与环评报告一<br>致 |
|    | 脱盐水                        | /                                       | 1190958             | 液态 | /        | 与环评报告一<br>致 |
| 能源 | 电 kw • h                   | /                                       | 14335.156           | /  | /        | 与环评报告一<br>致 |
|    | 蒸汽                         | /                                       | 400000              | /  | 管道输送     | 与环评报告一<br>致 |

# 3.5 公用工程

### 3.5.1 水源及水平衡

(1) 生活给水系统:由厂内现有管道提供,界区压力为 0.4MPaG,水质符合《生

活饮用水卫生标准》,水温为常温。生活给水由泰兴市安泰水务集团有限公司供应。

- (2) 生产给水系统:为各工艺生产装置及辅助设施提供所需的生产用水,生产给水量为 200m³/h,由厂内现有管道提供,界区压力 0.4MPaG,水温为常温。
  - (3) 稳高压消防水系统:

全厂新建独立的稳高压消防给水管网,消防主管网管径 DN400,环状布置,以确保本系统的可靠性和安全性。室外消火栓选用普通型地上式消火栓,布置间距不大于 60m。甲乙类可燃气体、可燃液体的高大框架和设备群设置消防水炮保护。

#### (4) 循环冷却水系统

本项目新建一座循环水站,设计能力为 13500m³/h, 主要为 PVC 装置、冷冻机提供所需的循环冷却用水。循环冷却水给水温度 32℃, 回水温度 40℃。本项目生产需使用 10625m³/h, 项目循环水站设计能力可满足生产需求。

实际建成后,各类给水系统建设情况与环评报告内容一致。

#### 3.5.2 排水

本项目采取"雨污分流、清污分流、分类收集"的原则,根据环评报告:项目各类PVC生产废水经新浦化学南厂PVC离心母液处理系统深度处理后回用于本项目装置聚合单元,该系统产生的再生废水经酸碱中和预处理;生活污水输送至新浦化学南厂区现有 1#有机废水处理设施预处理;以上废水处理达接管标准后一起排入园区工业污水处理厂集中处理。尾水达《城镇污水处理厂污染物排放标准》GB18918-2002一级 A 标准以及《化学工业水污染物排放标准》(DB32/939-2020)表 2、表 4 标准限值(从严执行)(水质主要指标 COD、氨氮、总磷执行《地表水环境质量标准》(GB3838-2002)中IV类标准)后排入友联中沟。

实际建成后,废水产生及处理、排放情况与环评报告中一致。实际建成后水平衡见 图 3.5.2-1。

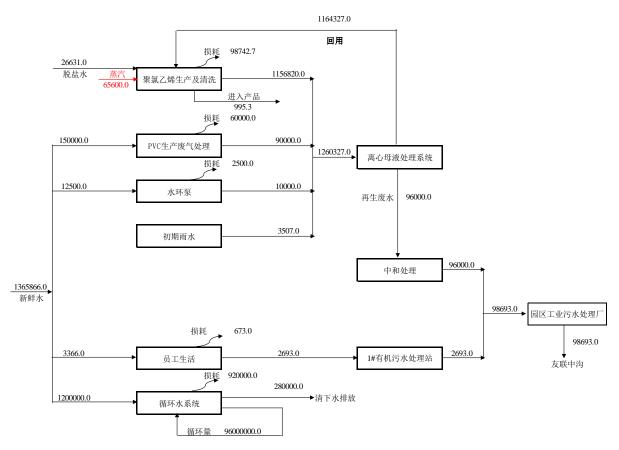



图 3.5.2-1 项目水平衡图 (m³/a)

#### 3.5.2 供电

本项目新建一座 35/10kV 装置变电站,从 PDH 厂区南侧 110kV 变电站引两路 35kV 电源供本项目,电源满足本项目全部一级和二级负荷用电要求。装置变电站内设两台 35/10kV 油浸式主变压器,10 台 10/0.4kV 干式变压器,均采用单母线分段接线,向各装置用电负荷供电。另设一台 0.4kV 柴油发电机,向各装置中一级负荷供电。

实际建设情况与环评报告内容一致。

#### 3.5.3 供热

本项目蒸汽小时平均用量为 50t/h,主要用于生产加热,由新浦公司供应,设计供应能力为 200t/h,可满足本项目建设需求。

实际建设情况与环评报告内容一致。

#### 3.5.5 贮运工程

根据环评报告,本项目氯乙烯、脱盐水原料通过管道输送至厂内,其他原辅料及产品运输通过汽车运输方式,公路运输依托当地社会运输力量,本项目不配置运输车辆。

生产过程装置内中氯乙烯、引发剂、分散剂、防粘釜剂、终止剂等物料输送均通过管道进行。

本项目建设一座引发剂冷库、一座化学品库。其中引发剂冷库用于暂存引发剂;化学品库用于暂存分散剂、防粘釜剂、终止剂、聚醚消泡剂、VCM 回收中和剂等。PVC 生产装置给料单元中设置 2×99m³ 储罐用于暂存每批次氯乙烯原料,同时设置热脱盐水罐、紧急终止剂罐、中和剂罐、添加剂罐等分别用于暂存每批次生产所需脱盐水和各类辅料。

本项目建成后储运工程与环评报告内容一致。项目各类原辅材料及产品储存、运输方式见下表。

# 表 3.5-1 项目原辅材料及产品储存和运输方式一览表

| <br>序<br>号 | 名称                         | 规格                             | 储存方<br>式    | 最大存<br>储量(t)                  | 来源及运输                                              | 存储位置       | 储罐/仓库<br>大小<br>(m²/m³) | 储罐数 (个) | 储存条件 | 实际建设情况        |      |               |
|------------|----------------------------|--------------------------------|-------------|-------------------------------|----------------------------------------------------|------------|------------------------|---------|------|---------------|------|---------------|
| 1          | 氯乙烯                        | VCM≥99.98%                     | 储罐          | 139                           | 来自新浦烯<br>烃球罐区和<br>新浦化学北<br>厂区 VCM 中<br>间罐,管道<br>输送 | 给料单元<br>储罐 | 99                     | 2       | /    | 与环评报告内<br>容一致 |      |               |
| 2          | 引发剂<br>TRIGONOX<br>23-C75  | 过氧化新戊酸叔-丁酯,75%无嗅石油精溶液          | 25kg 桶<br>装 | 25 / च                        | 国内汽运                                               | 引发剂冷<br>库  | /                      | /       | 冷藏   | 与环评报告内<br>容一致 |      |               |
| 3          | 引发剂<br>TRIGONOX<br>99-C75  | 过氧化新癸酸异丙基<br>苯酯,75%无嗅石油<br>精溶液 | 25kg 桶<br>装 | 35 (可<br>满足 25<br>天生产<br>需求)  | 国内汽运                                               |            | /                      | /       | 冷藏   | 与环评报告内<br>容一致 |      |               |
| 4          | 引发剂<br>TRIGONOX<br>125-C75 | 过氧化新戊酸叔戊<br>酯,75%无嗅石油精<br>溶液   | 25kg 桶<br>装 |                               | 国内汽运                                               |            | /                      | /       | 冷藏   | 与环评报告内<br>容一致 |      |               |
| 5          | 分散剂                        | Kuraray Poval(聚乙<br>烯醇)        | 25kg 袋<br>装 | 140 (可<br>满足 84<br>天生产<br>需求) | 国内汽运                                               |            |                        |         | 常温常压 | 与环评报告内<br>容一致 |      |               |
| 6          | 防粘釜剂                       | 甲醛与 1-萘酚的共<br>聚物,水溶液           | 200kg<br>桶装 | 20(可<br>满足 78<br>天生产<br>需求)   | 国内汽运                                               | 国内汽运       | 国内汽运                   | 化学品库    | 336  | /             | 常温常压 | 与环评报告内<br>容一致 |
| 7          | 终止剂                        | 复合高效环保终止剂<br>MC-105W           | 200kg<br>桶装 | 60 (可<br>满足 50<br>天生产<br>需求)  | 国内汽运                                               |            |                        |         | 常温常压 | 与环评报告内<br>容一致 |      |               |
| 8          | 聚醚消泡剂                      | 聚醚消泡剂 MC-202                   | 200kg       | 4.0 (可                        | 国内汽运                                               |            |                        |         | 常温常压 | 与环评报告内        |      |               |

| <br>序<br>号 | 名称            | 规格                   | 储存方式        | 最大存<br>储量(t)                       | 来源及运输 | 存储位置       | 储罐/仓库<br>大小<br>(m²/m³) | 储罐数<br>(个) | 储存条件 | 实际建设情况        |
|------------|---------------|----------------------|-------------|------------------------------------|-------|------------|------------------------|------------|------|---------------|
|            |               |                      | 桶装          | 满足 76<br>天生产<br>需求)                |       |            |                        |            |      | 容一致           |
| 9          | VCM 回收<br>中和剂 | 氢氧化钙                 | 25kg 袋<br>装 | 5t (可满<br>足 185<br>天生产<br>需求)      | 国内汽运  |            |                        |            | 常温常压 | 与环评报告内<br>容一致 |
| 10         | 链转移剂          | 2-巯基乙醇               | 200kg<br>桶装 | 1.0(可满<br>足 64 天<br>生产需<br>求)      | 国内汽运  |            |                        |            | 常温常压 | 与环评报告内<br>容一致 |
| 11         | 扩链剂           | 抗氧剂 1076             | 200kg<br>桶装 | 0.2(可<br>满足 111<br>天生产<br>需求)      | 国内汽运  |            |                        |            | 常温常压 | 与环评报告内<br>容一致 |
| 12         | 乙酸乙烯酯         | 醋酸乙烯酯单体(含<br>稳定剂 HQ) | 1t 桶装       | 15 (可<br>满足 115<br>天生产<br>需求)      | 国内汽运  | 给料单元<br>储罐 | 21.2                   | 1          | 常温常压 | 与环评报告内<br>容一致 |
| 13         | 消光剂           | 丙烯酸聚乙二醇酯             | 200kg<br>桶装 | 1.5(可<br>满足 78<br>天生产<br>需求)       | 国内汽运  | 化学品库       | 336                    | /          | 常温常压 | 与环评报告内<br>容一致 |
| 14         | 阻聚剂           | 对苯二酚                 | 20kg 袋<br>装 | 0.18 (可<br>满足 1<br>个月生<br>产需<br>求) | 国内汽运  | 化学品库       | 336                    | /          | 常温常压 | 与环评报告内<br>容一致 |
| 15         | 脱盐水           | 脱盐水                  | 储罐          | 440 (可                             | 管道输送  | 脱盐水罐       | 441m <sup>3</sup>      | 1          | 常温常压 | 与环评报告内        |

| <br>序<br>号 | 名称    | 规格         | 储存方式 | 最大存<br>储量(t) | 来源及运输 | 存储位置         | 储罐/仓库<br>大小<br>(m²/m³) | 储罐数<br>(个) | 储存条件 | 实际建设情况     |
|------------|-------|------------|------|--------------|-------|--------------|------------------------|------------|------|------------|
|            |       |            |      | 满足8          |       |              |                        |            |      | 容一致        |
|            |       |            |      | 天生产<br>需求)   |       |              |                        |            |      |            |
| 16         |       | 通用型 PVC 树脂 | 袋装   | 1111/2/57    | 国内汽运  |              |                        |            |      |            |
| 17         |       | 氯醋共聚树脂     | 袋装   |              | 国内汽运  |              |                        |            |      |            |
| 17<br>18   | 聚氯乙烯树 | 消光树脂       | 袋装   | 20000        | 国内汽运  | PVC 仓库       | 6885.4                 | /          | 常温常压 | 与环评报告内     |
| 19         |       | 低聚树脂       | 袋装   |              | 国内汽运  |              |                        |            |      | 一字环环放石内    |
| 20         | 脂     | 高聚树脂       | 袋装   |              | 国内汽运  |              |                        |            |      | <b>分</b> 以 |
| 21         |       | 等外品        | 袋装   | 33           | 国内汽运  | PVC 干燥<br>厂房 | 5788.12                | /          | 常温常压 |            |

# 3.6 生产工艺

根据环评报告,本项目利用新浦化学公司厂内现有富余的氯乙烯和烯烃厂区已建 "年产 40 万吨氯乙烯项目"生产的氯乙烯单体,采用悬浮乙烯法生产聚氯乙烯,溶有引发剂的氯乙烯单体以液滴状悬浮于去离子水(脱盐水)中进行自由基聚合生产聚氯乙烯。本项目建成后,实际生产产品及产品工艺流程与环评报告内容一致。

## 3.6.1 生产技术原理

#### (1) 通用型 PVC 树脂、低聚树脂、高聚树脂

本项目主要生产聚氯乙烯树脂,包括通用型 PVC 树脂、氯醋共聚树脂、消光树脂、低聚树脂、高聚树脂等产品,各产品生产工艺流程基本相同,均以氯乙烯(VCM)为原料,以各类分散剂、添加剂、防粘釜剂、引发剂等作为辅料,发生聚合反应生成。其中通用型 PVC 树脂(分子量范围为 4 万~11 万)、低聚树脂(分子量约 2.5 万~4 万)、高聚树脂(分子量约 11 万~18 万)主要在聚合度、黏数、鱼眼、吸油等性质有所差异,不同类型通用型 PVC 树脂主要通过控制反应温度、分散剂等助剂类型生成;低聚树脂主要通过在反应中加入链转移剂控制产品质量;高聚树脂通过在反应中加入扩链剂控制产品质量。发生反应方程式均为如下:

## $nCH_2=CHCl \rightarrow [CH_2CHCl]n$

#### (2) 氯醋共聚树脂

氯醋共聚树脂以 VCM 和醋酸乙烯酯为原料,发生聚合反应制成的树脂,反应方程式如下:

#### (3) 消光树脂

消光树脂以 VCM 和聚乙二醇双丙烯酸酯为原料,发生聚合反应制成的树脂,具有消光效果。发生反应方程式如下:

## 3.6.2 生产工艺流程及产污环节介绍

# (1) 通用型 PVC 树脂、低聚树脂、高聚树脂生产工艺流程及产污环节

通用型 PVC 树脂、低聚树脂、高聚树脂生产工艺流程和原料均一致,均聚合反应过程加入的助剂和控制温度有所区别。通用型 PVC 树脂、低聚树脂、高聚树脂生产装置主要分为 6 个生产单元:给料单元、聚合单元、浆料汽提单元、VCM 回收单元、废水汽提单元、离心干燥单元,大部分操作通过分布式控制系统(DCS)进行。其主要生产工艺流程见图 3.6.2-1。

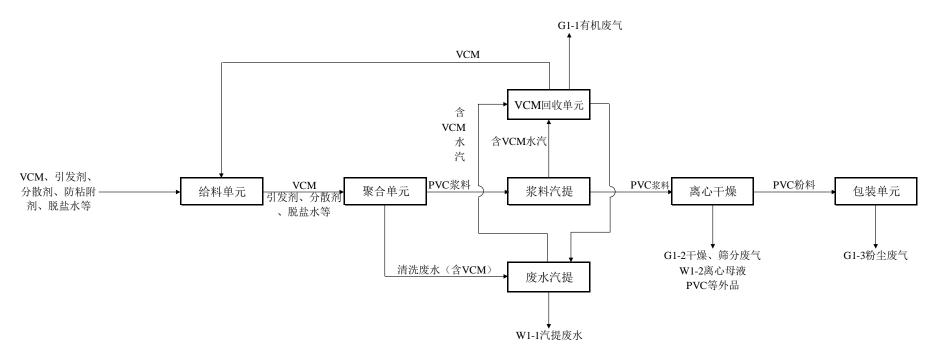



图 3.6.2-1 通用型 PVC 树脂、低聚树脂、高聚树脂聚氯乙烯工艺流程及产污环节图

## 具体工艺流程描述:

- (1)给料单元:主要为脱盐水、VCM、分散剂、引发剂等各原辅料至现场的配料、 贮存过程,简要介绍如下:
- ①脱盐水:现有脱盐水站和离心母液处理系统提供的脱盐水通过管道输送至给料单元脱气装置中,脱盐水在真空条件下向下通过填料,用于脱除溶解在脱盐水中的空气,使聚合含氧量不得超过1ppm。经脱气装置处理后的脱盐水输送至脱盐水罐(1座441m³,为两条生产线供应脱盐水)中,通过脱盐水加热器将脱盐水加热至30℃暂存。脱盐水向聚合釜中加料采用加料泵。
- ②VCM: 通过管道输送来的新鲜 VCM 送至给料单元中的 VCM 加料槽(2×99m³, 分别对应两条聚合线给料,不交叉使用)中, VCM 回收单元回收的 VCM 通过泵输送至回收 VCM 准备槽中暂存,根据需求一起计量后送入聚合釜。
- ③分散剂:分散剂 SA 分工称量后,存储在 SA 加料料斗 VE-1107ABC 中,通过旋转阀加入至 SA 溶解槽 VE-1108ABC 中,与脱盐水混合溶解。根据不同种类的 SA,分别对 SA 溶解槽进行加热或冷却。溶解后的 SA 溶液转存至 SA 储槽 VE-1109,VE-1111,VE-1117 中。储槽操作温度低于  $20^{\circ}$ C,操作压力常压。
- ④其他助剂: 消泡剂 FO、中和剂、添加剂、消光剂 EB、链转移剂 LA(低聚树脂生产使用)、扩链剂(高聚树脂生产使用)、抗氧剂 HK、醋酸乙烯酯等分别存储在储罐 VE-1102/2102、VE-1112/2112,VE-1113/2113、VE-1123,VE-1124,VE-1127,VE-1135中,根据产品需要通过加料泵将每批次物料管道输送入聚合釜中(上述试剂中仅中和剂使用前采用纯水以一定比例配制,其他试剂均直接添加至助剂罐中使用)。储罐操作温度均为常温,操作压力均为常压。
- ⑤终止剂:存储在终止剂罐 VE-1101-3A~D/VE-2101-3A~D 中。仅在停电等聚合反应失效时使用。储罐操作温度 30℃,操作压力 2MpaG。
- ⑥防粘釜剂: 防粘釜剂 NS 储存在 VE-1121/2121 中,操作温度常温,操作压力 0.3MPaG。
- ⑦引发剂:三种引发剂分别储存在引发剂储罐 VE-1131A、B、C 中。操作温度-20 $^{\circ}$ 、操作压力 5kpaG。

上述助剂仅分散剂涉及溶液配置过程,其他助剂直接在给料单元相应储罐中储存。分散剂溶液采用加料料斗通过旋转阀自动配置,配置过程基本无污染产生。

- (2) 聚合单元:包括加料、聚合反应、出料过程。
- ①加料:聚合釜入料前先进行聚合釜涂釜操作,即在不打开反应釜人孔的情况通过防粘釜剂系统向聚合釜内壁喷涂防粘釜剂,涂釜操作由计算机控制自动进行。涂釜后进行加冷脱盐水操作,同时通过加料泵和管道加入反应所需分散剂、引发剂。冷脱盐水加料完毕后开始向釜内通入定量 VCM 单体,在需加入的 VCM 单体剩余约 20t 时,以恒速从反应釜底部注入定量的 110~150℃热脱盐水(平行入料方式),达到 VCM 单体与热脱盐水同时入料完成,剧烈搅拌,使 VCM 液滴保持良好的悬浮状态。

本项目 VCM 原料输送采用平衡管技术,管道系统内产生的挥发性气体返回相应的料槽,不对外排放,因此加料过程不会排放废气污染物。

②聚合反应: 当釜内物料温度达到要求后,聚合反应开始,由于聚合反应是放热过程,反应过程中通过调节聚合夹套、内冷盘管和回流冷凝的冷却水量使反应温度自动维持在设定的反应温度。对于不同牌号的 PVC 树脂,反应温度设定不同(45~70℃之间,0.6~1.2MPaG下进行),一般情况下反应温度越高,越容易发生聚合。

当釜压下降至 0.56MPa~0.92MPa (根据不同产品配方设置),聚合反应结束,加入定量终止剂、中和剂和消泡剂,以防止下游设备腐蚀,优化 PVC 产品质量。聚合过程 氯乙烯转化率约 87%,收率为 84%,每批次聚合反应时间约需 4~8h。

③出料:反应结束后,对聚合釜进行出料操作。釜内 PVC 浆料通过出料泵 PU-1106A/B 进入高压出料槽 VE-1116A/B,在高压出料槽内对未反应的单体进行回收操作后经倒料泵 PU1116A/B 打至低压出料槽 VE-1118。出料快结束时,采用 10~100bar 脱盐水或离心母液水进行冲洗,随 PVC 浆料一起泵入汽提塔进行浆料汽提过程。

聚合出料完成后,通过固定在反应釜中的喷嘴喷涂防粘釜剂,借助蒸汽雾化加强喷涂效果,防粘釜剂喷涂完成后,采用脱盐水清洗聚合釜,进入下一批次加料步骤。清洗过程产生清洗废水,进入废水汽提单元。

- (3)浆料汽提单元:低压出料槽中的 PVC 浆料中含有 10000~30000ppm 的 VCM, 浆料从汽提塔顶部进入,与上升的蒸汽进行接触,塔顶蒸汽进入 VCM 回收单元进行冷凝回收;塔底经汽提后浆料通过热交换器与进塔浆料换热后贮存在缓冲槽中,进入后续离心干燥单元。
- (4) 离心干燥单元:经汽提后浆料用泵输送至离心机,离心后物料通过重力进入干燥器干燥。本项目干燥器分两段流化床,第一段为返混段,第二段为柱塞流段。PVC

粉料经反混段干燥后含水率约为 3%,柱塞流段中设有挡板,保证粉料在干燥器内有足够的停留时间,干燥器出口处粉料含水率可降低至 0.3%以下。干燥器热源由返混段换热板或盘管内循环的热水提供,热水进度温度用蒸汽加热器保持在 95℃。干燥后粉料经筛分,不合格产品为等外品,合格产品进入后续包装单元。

离心过程产生离心母液,部分回用至聚合单元作冲洗水,剩余部分(W1-2)送离心母液处理系统处理;干燥过程产生干燥废气,污染因子为微量 VCM,筛分过程产生少量粉尘废气,干燥、筛分过程均在离心干燥单元,因此一起纳入 G1-2 废气进行计算。

(5)包装单元:经筛分后合格产品通过气力输送系统送至 PVC 料仓储存,由料仓下的全自动包装机进行包装并输送至高位码垛机组完成码垛。满垛盘输送机将成品垛盘送至套膜机套膜后进入立体仓库储存。

包装单元产生粉尘废气(G1-3),主要来自气力输送系统和包装过程。

(6) VCM 回收单元:聚合低压出料槽和浆料汽提脱除的 VCM 进入 VCM 连续回收压缩机 CO-1303/2303,聚合高压出料槽中脱除的 VCM 进入间断回收压缩机 CO-1301AB/2301AB。压缩机出口压力约为 50℃,0.5MpaG。

被压缩后的 VCM 气体在 R-VCM 冷凝器 HE-1301/2301,HE-1302/2302 中冷凝,未被冷凝的含有惰性气体的 VCM 气体经 CO-1310、HE-1310 二级加压冷凝回收 VCM 后被送至变压吸附 PSA 装置进一步处理,压力 $\sim$ 0.7MPa,温度  $10^{\circ}$ C。冷凝下来的 VCM 液体送至 R-VCM 倾析器 VE-1301/2301 以便分离游离水(压力 $\sim$ 0.4MPa,温度  $20^{\circ}$ C),分离后的 R-VCM 储存在 R-VCM 储槽 VE-1302/2302 中,供聚合单元加料使用。二级冷凝 VCM 回收效率分别为 98.7%和 94.1%,PSA 变压吸附回收效率为 99.4%。

VCM 回收单元经二级冷凝和 PSA 变压吸附后产生驰放气(G1-1)和分离废水,驰放气送新浦化学公司烯烃厂区工业酸装置综合利用后经一级碱洗处理后排放,分离废水进入废水汽提单元处理。

(7)废水汽提单元:《烧碱、聚氯乙烯工业污染物排放标准》(GB15581-2016)要求车间或生产装置排口排放的废水氯乙烯浓度需低于 0.5mg/L,项目聚合釜清洗废水、压缩机密封水、VCM 回收单元分离废水等被收集在废水槽 VE-1305 中,通过废水泵 PU-1304 将废水送至废水汽提塔 TW-1301 并用蒸汽进行汽提(操作温度 105℃,0.005MPaG),脱出的 VCM 和水通过废水汽提冷凝器 HE-1305 冷凝,未被冷凝的 VCM 气送至 VCM 回收单元压缩机入口。

经汽提后的废水(W1-1)进入新浦化学离心母液处理系统处理。

## (2) 氯醋共聚树脂生产工艺流程及产污环节

氯醋共聚树脂生产工艺流程及产污环节与通用型 PVC 树脂、低聚树脂、高聚树脂均一致,仅生产涉及原辅料及反应条件有所区别,在此不作赘述。氯醋共聚树脂生产以 VCM 和醋酸乙烯酯为原料,其主要生产工艺流程见图 3.6.2-2。

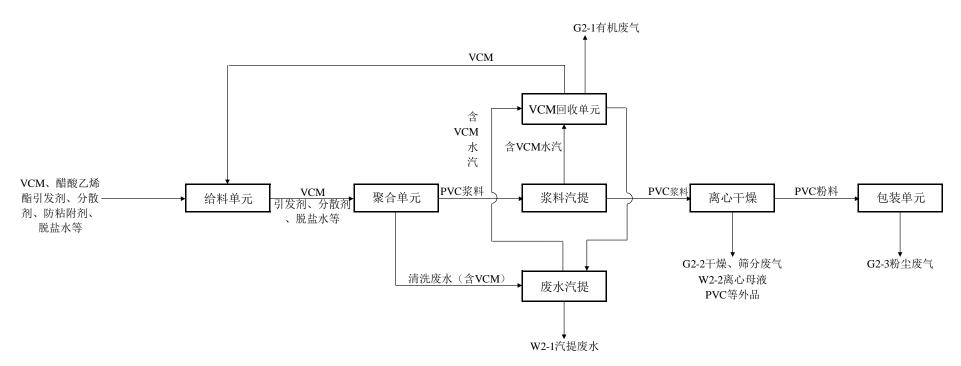



图 3.6.2-2 氯醋共聚树脂生产工艺流程及产污环节图

# (3) 消光树脂生产工艺流程及产污环节

消光生产工艺流程及产污环节亦与通用型 PVC 树脂、低聚树脂、高聚树脂一致,仅生产涉及原辅料及反应条件有所区别,在此不作赘述。消光树脂生产以 VCM 和丙烯酸聚乙二醇双丙烯酸酯为原料,其主要生产工艺流程见图 3.6.2-3。

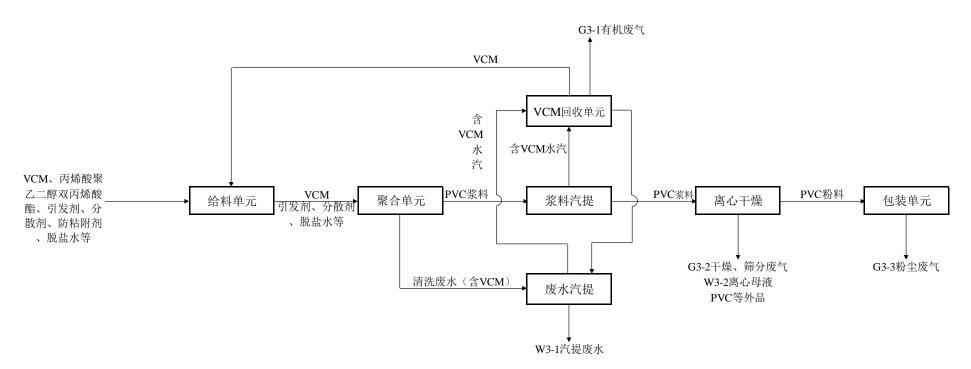



图 3.6.2-3 消光树脂生产工艺流程及产污环节图

# 3.7 项目变动情况

## 3.7.1 本项目变动情况

根据企业提供资料及现场踏勘结果,目前本项目实际建设情况与环评报告相比变动主要如下:

## (1) 包装单元料仓工作方式发生变化

根据环评报告,本项目建设两条 PVC 生产线,包装单元共建设 7 个料仓,每个料仓配套一套布袋除尘系统,气力输送粉尘经布袋除尘处理后通过料仓项排口排出(3#~9#)。其中一个料仓用于储存等外品(9#排气筒),正常情况下同时使用其中的 6 个料仓,因此正常工况下仅对 3#~8#排气筒废气污染物产排进行分析。

实际建成后,PVC 装置共设两条生产线,7个料仓(编号为A~G),其中一条生产线对应A、B、C仓,另一条生产线对应D、E、F仓。G仓作为两条生产线共用料仓,仅为25kg包装机供料,现场实际根据包装PVC粉料牌号进行切仓操作,即需要包装25kg粉料时两条生产线气力输送系统切至G仓,正常运行时每条生产线仅对应一个料仓,项目建成后7个料仓最多仅2个料仓同时使用。由于项目生产规模不变,因此包装单元涉及排放的粉尘废气污染物排放速率及排放方式发生变化,但颗粒物排放总量不变。

# (2) 干燥、筛分废气非甲烷总烃排放量增加,无组织排放量减少,全厂排放量不 新增

实际建成试运行期间,干燥、筛分废气(1、2#排气筒)污染物非甲烷总烃实测值与环评报告比偏高(实际运行时由于产品分子量不同,1#、2#排气筒废气排放量不完全相同,平均值约 2.73mg/m³),经核算干燥、筛分废气非甲烷总烃实际废气排放量为5.237t/a,与环评报告相比增加了 4.997t/a。经分析,这是由于环评阶段废气排放量采用物料平衡法核算(数据来自设计院提供的工艺包),设计阶段未考虑其他辅料可能带入的易挥发物质,导致 PVC 浆料中残留的挥发物质增加,干燥、筛分工序产生的有机废气污染物(以非甲烷总烃计)也相应增加(但仍可满足相应排放标准要求)。

为此,公司对厂内生产装置涉及的各类搅拌器、泵、阀门等设备进行改造提升其密封性能,以期达到减少无组织废气排放量目的。具体包括:①高低压出料槽搅拌器机械密封原设计为单端面机械密封,实际建设时改为双端面机械密封,密封性能得到提升;②部分阀门原设计为普通阀门,实际建设时改为波纹管阀门;③VCM/R-VCM 单体泵

原设计使用普通密封形式,实际建设时改为隔离液双端面机械密封。同时,项目建成后公司按照要求开展 VOCs 泄漏检测与修复(LDAR)工作,对厂内设备动静密封处排放速率≥500μmol/mol 密封点进行及时修复。根据检测结果,厂内无组织废气污染物非甲烷总烃排放量可由环评报告中核算的 5.656t/a 减少至 0.656t/a (减少量 5t/a),非甲烷总烃无组织减少部分全部在装置内经 VCM 回收单元后作为 PSA 变压吸附过程驰放气(G1-1、G2-1、G3-1),送烯烃厂区 VCM 项目工业酸装置综合利用后经一级碱洗处理后排放(去除效率 99.95%,最终排放量为 0.0025t/a)。上述措施实施后,可做到全厂非甲烷总烃排放量与环评报告相比不新增。

## (3) 排气筒排放参数及排放方式发生变化

本项目各废气经收集处理后排气筒排放参数及排放方式实际建设与环评报告略有 不同,具体见下表。

| ı <del>≷</del> : |                   |               | 环评报告内容                                         | ř                                                    | 3                 | 实际建设情况                                  |          |
|------------------|-------------------|---------------|------------------------------------------------|------------------------------------------------------|-------------------|-----------------------------------------|----------|
| 序<br>号           | 污染源               | 处理措施          | 排放参数                                           | 排放工况                                                 | 处理措施              | 排放参数                                    | 排放<br>工况 |
| 1                | 干燥、<br>筛分废<br>气   | 旋风除尘+<br>水洗装置 | 1#、2#排气<br>筒:高度<br>30m、内径<br>1.5m              | 正常工况                                                 | 旋风除尘<br>+水洗装<br>置 | 1#、2#排气<br>筒: 高度<br>40m,内径<br>2m        | 正常工况     |
| 2                | 气力输<br>送废气        | 自带袋式除尘        | 共7个料仓<br>7个排气筒<br>(3#~9#):<br>高度45m、<br>内径0.4m | 正常工况下使<br>用其中的6个<br>料仓;非正常<br>工况时另外一<br>个等外品排口<br>运行 | 自带袋式除尘            | 共7个料仓<br>7个排气<br>筒:高度<br>45m,内径<br>0.4m | 最仅个仓时用   |
| 3                | 包装废气              | 袋式除尘          | 10#排气筒:<br>高度 15m、<br>内径 0.8m                  | 正常工况                                                 | 袋式除尘              | 10#排气筒:<br>高度<br>23.6m,内径<br>0.7m       | 正常工况     |
| 4                | 聚合废<br>水池有<br>机废气 | 二级活性炭         | 11#排气筒:<br>高度 25m、<br>内径 0.4m                  | 正常工况                                                 | 二级活性炭             | 11#排气筒:<br>高度 25m、<br>内径 0.254m         | 正常工况     |
| 5                | 危废库<br>废气         | 二级活性炭         | 12#排气筒:<br>高度 15m、<br>内径 0.4m                  | 正常工况                                                 | 二级活性              | 12#排气筒:<br>高度 15m、<br>内径 0.6m           | 正常<br>工况 |

表 3.7.1-1 本项目排气筒排放参数及排放方式实际情况与环评报告对比

上述变动发生后,与环评报告相比废气污染物排放量未增加;废气主要排放口未增加;主要排放口排气筒高度未降低。

# 3.7.2 变动界定情况

本项目变动情况与《石油炼制与石油化工建设项目重大变动清单(试行)》(环办〔2015〕52号)相关内容对照情况见下表。

表 3.7.2-1 本项目变动情况与《石油炼制与石油化工建设项目重大变动清单(试行)》对照分析

| 绯 | 計号 | 重大变动清单                                                                                                         | 本项目情况                                                                           | 判定          |
|---|----|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------|
| 1 |    | 一次炼油加工能力、乙烯裂解加工能力增大30%及以上;储罐总数量或总容积增大30%及以上。                                                                   | 项目主要生产工艺为给料、聚合、浆料汽提、离心干燥、包装等,加工能力未发生变化,不涉及一次炼油加工能力、乙烯裂解加工;本项目储罐总数量或总容积未发生变化。    | 未变动         |
| 2 | 规模 | 新增以下重点生产装置或其规模增大 50%及以上,包括:石油炼制工业的催化连续重整、催化裂化、延迟焦化、溶剂脱沥青、对二甲苯 (PX)等,石油化工工业的丙烯腈、精对苯二甲酸(PTA)、环氧丙烷(PO)、氯乙烯(VCM)等。 | 本项目以厂内富余氯乙烯(VCM)为原料,建设年产 50 万吨聚氯乙烯(PVC)生产装置,不属于重点生产装置,且本项目建成后生产装置及规模未发生变化。      | 未变动         |
| 3 |    | 新增重点生产装置外的其他装置<br>或其规模增大 50%及以上,并导<br>致新增污染因子或污染物排放量<br>增加。                                                    | 本项目建设年产 50 万吨聚氯乙烯(PVC)生产装置,不属于重点生产装置,本项目建成后生产装置及规模未发生变化。                        | 未变动         |
| 4 |    | 项目重新选址,或在原厂址附近 调整(包括总平面布置或生产装置发生变化)导致不利环境影响 显著加重或防护距离边界发生变 化并新增了需搬迁的敏感点。                                       | 项目厂址及总平面布置均未发生变化。                                                               | 未变动         |
| 5 | 地点 | 厂外油品、化学品、污水管线路<br>由调整,穿越新的环境敏感区;<br>防护距离边界发生变化并新增了<br>需搬迁的敏感点; 在现有环境敏<br>感区内路由发生变动且环境影响<br>或环境风险增大。            | 本项目不涉及厂外油品、化学品、污水管线路; 防护距离边界未发生变化。                                              | 未变动         |
| 6 | 生产 | 原料方案、产品方案等工程方案<br>发生变化。                                                                                        | 本项目建成投运后原料方案、产品方案等工程方案与环评报告内容一致。                                                | 未变动         |
| 7 | 工艺 | 生产装置工艺调整或原辅材料、<br>燃料调整,导致新增污染因子或                                                                               | 本项目建成投运后生产装置工艺、原辅材料、燃料与环评报告内容一致,仅包装单元料仓工作方式发生变动。环评报告中本项目共建设两条 PVC 生产线,包装单元共建设 7 | 不属于重大<br>变动 |

| 绯 | 号     | 重大变动清单                                                                                              | 本项目情况                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 判定                                      |
|---|-------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
|   |       | 污染物排放量增加。                                                                                           | 个料仓,每个料仓配套一套布袋除尘系统,气力输送粉尘经布袋除尘处理后通过料仓顶排口排出(3#~9#)。其中一个料仓用于储存等外品(9#排气筒),正常情况下同时使用其中的6个料仓,因此正常工况下仅对3#~8#排气筒废气污染物产排进行分析。实际建成后,PVC装置两条生产线对应7个料仓(编号为A~G),其中一条生产线对应A、B、C仓,另一条生产线对应D、E、F仓。G仓作为两条生产线共用料仓,仅为25kg包装机供料,现场实际根据包装PVC粉料牌号进行切仓操作,即需要包装一线粉料时一线气力输送系统切至G仓,需要包装二线粉料时二线气力输送切至G仓,正常运行时每条生产线仅对应一个料仓,即项目建成后7个料仓最多仅2个料仓同时使用。变动后包装单元涉及排放的粉尘废气污染物排放速率及排放方式发生变化,但颗粒物排放总量不变。                                                                                                                                                                                                                                                          |                                         |
| 8 | 环境护措施 | 污染防治措施的工艺、规模、处置去向、排放形式等调整,导致新增污染因子或污染物排放量、范围或强度增加;地下水污染防治分区调整,降低地下水污染防治等级;其他可能导致环境影响或环境风险增大的环保措施变动。 | (1)废气:①由于环评阶段废气排放量采用物料平衡法核算(数据来自设计院提供的工艺包),设计阶段未考虑其他辅料可能带入的易挥发物质,导致 PVC 浆料中残留的挥发物质增加,干燥、筛分工序产生的有机废气污染物(以非甲烷总烃计)也相应增加。根据试运行期间检测结果,干燥、筛分废气非甲烷总烃实际废气排放量为 5.237t/a,与环评报告相比增加了 4.997t/a(但仍满足相应排放标准要求)。为此,公司对厂内生产装置涉及的各类搅拌器、泵、阀门等设备进行改造提升其密封性能,以期达到减少无组织废气排放量目的。具体包括:高低压出料槽搅拌器机械密封原设计为单端面机械密封,实际建设时改为双端面机械密封;部分阀门原设计为普通阀门,实际建设时改为波纹管阀门:VCM/R-VCM 单体泵原设计使用普通密封形式,实际建设时改为隔离液双端面机械密封。同时,项目建成后公司按照要求开展 VOCs 泄漏检测与修复(LDAR)工作,对厂内设备动静密封处排放速率≥500μmol/mol 密封点进行及时修复。根据检测结果,厂内无组织废气污染物非甲烷总烃排放量约可减少 5t/a,全部在装置内经 VCM 回收单元后作为 PSA 变压吸附过程验放气,送烯烃厂区 VCM 项目工业酸装置综合利用后经一级碱洗处理后排放(去除效率 99.95%,最终排放量为 0.0025t/a)。上述措施实施后,可做到全厂非甲烷总烃排放量与环评报告相比不新增。 | 有排加废放全染量经变环增于组放无实减废排新测后影,大爱组际少气放增分大响不变。 |

| 编号 | 重大变动清单 |    |                 |                   | 本项目                                              | 目情况                                                      |                   |                                             |            | 判定 |
|----|--------|----|-----------------|-------------------|--------------------------------------------------|----------------------------------------------------------|-------------------|---------------------------------------------|------------|----|
|    |        |    |                 |                   | 环评报告内容                                           | <u> </u>                                                 | 实                 | 际建设情况                                       |            |    |
|    |        | 序号 | 污染源             | 处理措<br>施          | 排放参数                                             | 排放工况                                                     | 处理措<br>施          | 排放参数                                        | 排放工况       |    |
|    |        | 1  | 干燥、<br>筛分废<br>气 | 旋风除<br>尘+水洗<br>装置 | 1#、2#排气<br>筒:高度<br>30m、内径<br>1.5m                | 正常工况                                                     | 旋风除<br>尘+水洗<br>装置 | 1#、2#排<br>气筒:高<br>度 40m,<br>内径 2m           | 正常工况       |    |
|    |        | 2  | 气力输<br>送废气      | 自带袋式除尘            | 共7个料仓<br>7个排气筒<br>(3#~9#):<br>高度 45m、<br>内径 0.4m | 正常工况下<br>使用其中的<br>6个料仓;<br>非正常工况<br>时另外一个<br>等外品排口<br>运行 | 自带袋式除尘            | 共7个料<br>仓7个排<br>气筒:高<br>度45m,<br>内径<br>0.4m | 最多仅个料仓同时使用 |    |
|    |        | 3  | 包装废气            | 袋式除<br>尘          | 10#排气筒:<br>高度 15m、<br>内径 0.8m                    | 正常工况                                                     | 袋式除<br>尘          | 10#排气<br>筒:高度<br>23.6m,<br>内径<br>0.7m       | 正常工况       |    |
|    |        | 4  | 聚合废 水池有 机废气     | 二级活性炭             | 11#排气筒:<br>高度 25m、<br>内径 0.4m                    | 正常工况                                                     | 二级活性炭             | 11#排气<br>筒:高度<br>25m、内<br>径<br>0.254m       | 正常工况       |    |
|    |        | 5  | 危废库<br>废气       | 二级活<br>性炭         | 12#排气筒:<br>高度 15m、                               | 正常工况                                                     | 二级活<br>性炭         | 12#排气<br>筒: 高度                              | 正常         |    |

| 编号 | 重大变动清单 |        |                                          |   | 本项目     | 情况      |     |        |   | 判定 |
|----|--------|--------|------------------------------------------|---|---------|---------|-----|--------|---|----|
|    |        |        |                                          |   | 内径 0.4m |         |     | 15m、内  | 工 |    |
|    |        |        |                                          |   |         |         |     | 径 0.6m | 况 |    |
|    |        | (2     | (2) 固废: 各类固废产生类别及处置方式均未发生变化,可作为零排放。      |   |         |         |     |        |   |    |
|    |        | (3) 地一 | (3) 地下水、风险: 已按要求建设分区防渗措施,未降低地下水污染防渗等级;本项 |   |         |         |     |        |   |    |
|    |        |        |                                          | 目 | 变动情况不涉及 | 及增大环境风险 | Ž • |        |   |    |

通过对本项目实际建设情况与环境影响报告书相关内容进行对照分析,本项目性质、规模、建设地点、生产工艺、环境保护措施等方面变化均不属于重大变动,纳入竣工环境保护验收管理。本项目已根据《省生态环境厅关于加强涉变动项目环评与排污许可管理衔接的通知》(苏环办〔2021〕122号)相关要求编制《年产50万吨乙烯法聚合技术制备聚氯乙烯项目一般变动影响分析报告》,并于2025年7月28日通过专家技术评审。

# 4环境保护设施

# 4.1 污染物治理/处置设施

#### 4.1.1 废水

根据环评报告,本项目产生的废水有:汽提废水、离心母液、PVC装置设备及地面清洗废水、废水处理废水、水环泵废水、初期雨水及员工生产污水等。其中汽提废水、离心母液、PVC装置设备及地面清洗废水等各类 PVC生产废水经新浦化学南厂在建PVC离心母液处理系统深度处理后回用于本项目生产装置聚合单元,该系统产生的再生废水经酸碱中和预处理;生活污水输送至新浦化学南厂区现有1#有机废水处理设施预处理,以上废水处理达接管标准后一起排入园区工业污水处理厂集中处理,尾水达《城镇污水处理厂污染物排放标准》GB18918-2002一级A标准以及《化学工业水污染物排放标准》(DB32/939-2020)表2、表4标准限值(从严执行)(水质主要指标COD、氨氮、总磷执行《地表水环境质量标准》(GB3838-2002)中IV类标准)后排入到友联中沟。

实际建成后,废水产生及处理情况与环评报告内容一致,项目废水实际排放情况见表 4.1.1-1,厂内废水预处理设施工艺流程见图 4.1.1-1,现场照片见图 4.1.1-2。本项目已按《江苏省排污口设置及规范化整治管理办法》(苏环控〔1997〕122 号)的要求规范各类排污口,配套建设了废水流量计、COD、氨氮、pH、TP 在线监测装置。

|        | ·           | 1          | 一人口及小     |           | <i>7</i> 07K         |      | T    |
|--------|-------------|------------|-----------|-----------|----------------------|------|------|
| 废水类型   | 废水来源        | 水量<br>m³/a | 污染物种<br>类 | 预处理措<br>施 | 设计处<br>理能力           | 排放去向 | 排放规律 |
|        |             |            | COD       |           |                      |      |      |
| 汽提废水   | 浆料汽提单元      | 159012     | SS        |           |                      |      |      |
|        |             |            | VCM       |           |                      |      |      |
| 离心母液   |             |            | COD       |           |                      |      |      |
| 废水     | 离心干燥        | 957808     | SS        |           |                      |      |      |
| / 及小   |             |            | VCM       | PVC 离     |                      |      |      |
|        |             |            | COD       | 心母液处      |                      |      |      |
| 清洗废水   | 设备清洗        | 40000      | SS        | 理系统预      | 220m <sup>3</sup> /h | 不外排  | /    |
|        |             |            | VCM       | 处理后回      |                      |      |      |
| PVC 废气 |             |            | COD       | 用         |                      |      |      |
| 处理废水   | 废气处理        | 90000      | SS        |           |                      |      |      |
| 处垤及小   |             |            | VCM       |           |                      |      |      |
| 水环泵废   |             |            | COD       |           |                      |      |      |
|        | 水环泵运行       | 10000      | SS        |           |                      |      |      |
| 水      |             |            | VCM       |           |                      |      |      |
|        | PVC 离心母液    |            | pН        |           |                      | 园区工业 |      |
| 再生废水   | 上 处理系统纯水    | 96000      | COD       | 酸碱中和      | /                    |      | 连续排放 |
|        | 文 生 尔 统 代 小 |            | SS        |           |                      | 污水处理 |      |

表 4.1-1 本项目废水排放情况一览表

| 废水类型 | 废水来源            | 水量<br>m³/a | 污染物种<br>类 | 预处理措<br>施 | 设计处<br>理能力           | 排放去向      | 排放规律 |
|------|-----------------|------------|-----------|-----------|----------------------|-----------|------|
|      | 单元阴阳离子<br>满室床再生 |            | 氯离子       |           |                      | 厂集中处<br>理 |      |
|      |                 |            | COD       |           |                      |           |      |
| 员工生活 | 旦工化江            | 2602       | SS        | 1#有机污     | 100 34               |           |      |
| 污水   | 员工生活            | 2693       | 氨氮        | 水处理站      | 100m <sup>3</sup> /h |           |      |
|      |                 |            | 总磷        |           |                      |           |      |

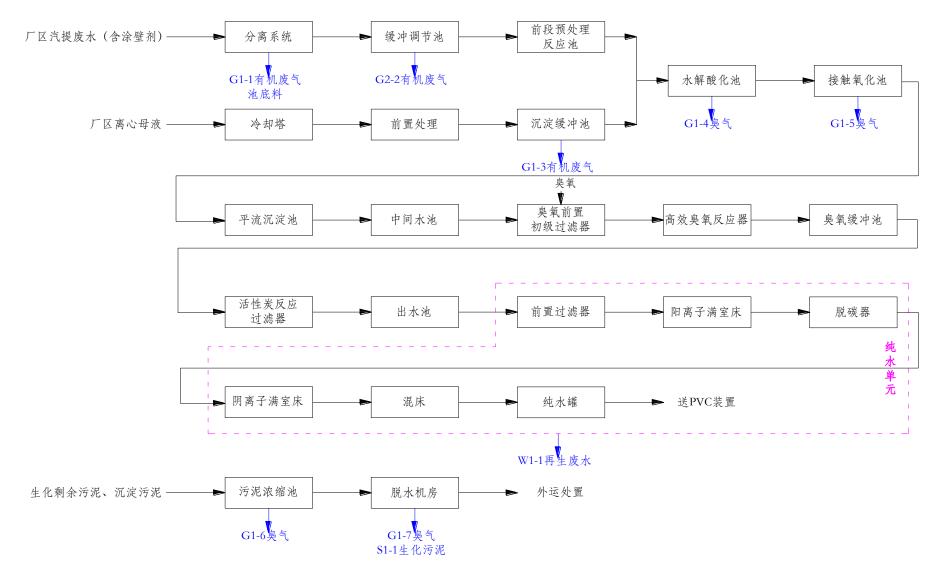
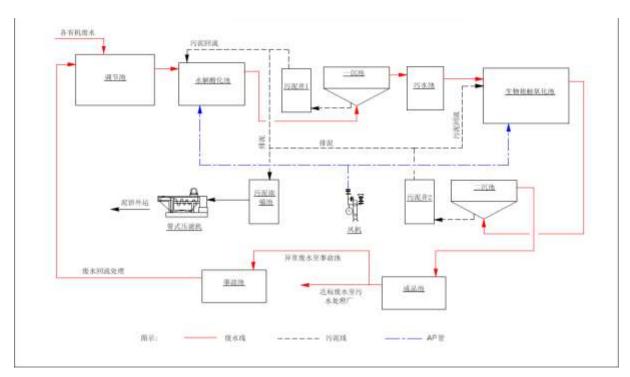
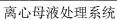
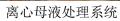



图 4.1.1-1 本项目污水处理工艺流程图



图 4.1.1-1(续) 新浦化学公司南厂区 1#有机污水处理装置工艺流程图



1#有机污水处理装置









总排口

图 4.1.1-2 污水处理设施现场照片

#### 4.1.2 废气

#### (一) 有组织废气

本项目有组织废气主要包括: PVC 生产过程产生的有机废气,干燥、筛分废气,包装废气,污水处理废气,危废库暂存废气。

## (1) PVC 生产过程产生的有机废气

为 VCM 回收单元 PSA 变压吸附过程产生驰放气,主要成分为氮气、氯乙烯等,其中污染因子氯乙烯纳入非甲烷总烃进行核算,根据物料平衡,产生量为 1.37t/a,送新浦化学烯烃厂区 VCM 项目工业酸装置综合利用后经一级碱洗处理后排放。烯烃厂区工业酸装置包括一套气相工业酸装置和一套液相工业酸装置,气相工业酸装置废气经一级碱洗处理,液相工业酸装置废气经二级碱洗处理,尾气一并通过"年产 40 万吨氯乙烯项目"9#排气筒排放。本项目 PSA 驰放气一般情况下进入气相工业酸装置综合利用,气相工业酸装置检修时进入液相装置,烯烃厂区内部进行工艺切换。

本项目实际建成后,PVC生产过程产生的有机废气处理措施与环评报告内容一致。根据现场踏勘,VCM项目工业酸装置已于2023年建成,并于同年8月通过企业自主竣工环境保护验收,从建设时序上可处理该股废气。VCM项目工业酸装置处理能力为:废气2500kg/h,操作弹性为50%~150%;液相工业酸装置处理能力为:废液1400kg/h、废气2500kg/h,操作弹性50%~150%,液相工业酸装置作为气相工业酸装置的备用炉。本项目变动后PSA驰放气废气污染物VCM产生速率增加为0.80kg/h(变动后),因此从规模上分析,烯烃厂区VCM项目工业酸装置仍足以接收处理该股废气。根据新浦化学公司VCM项目例行监测数据及本项目验收监测数据,VCM项目工业酸装置9#排气筒出口氯乙烯、非甲烷总烃均可达标排放。因此,本项目PVC生产过程产生的有机废气可依托VCM项目工业酸装置综合利用。

## (2) 干燥、筛分废气

根据环评报告,项目干燥、筛分过程均在密闭设备中进行,在设备排气筒口通过管道收集废气,每条线均配套一套旋风除尘器+水洗装置,废气收集后进入对应旋风除尘器+水洗装置处理后通过 30m 高排气筒(高度 30m、内径 1.5m)排放。

实际建成后,干燥、筛分废气处理措施与环评报告内容一致,但是排气筒排放参数略有调整,实际排气筒高度增加至 40m,内径为 2m。

#### (3) 包装废气

根据环评报告:包装单元合格产品经气力输送系统送至 6 个料仓储存(共设置 7 个料仓,正常情况下使用 6 个料仓,出现不合格品时启用剩余 1 个料仓),气力输送过程产生的粉尘经各料仓配套的布袋除尘装置处理后从顶部排口排出(3#~8#排气筒,高 45m、内径 0.4m)。包装过程采用全自动包装机进行,包装过程产生粉尘废气经管道收集后送设备配套布袋除尘系统(6 套)处理后通过 10#排气筒(高 15m、内径 0.8m)合并排放。

实际建成后,料仓工作方式和环评报告相比有所调整,导致包装单元气力输送废气排放方式发生变化。PVC 装置两条生产线对应 7 个料仓(编号为 A~G),其中一条生产线对应 A、B、C仓,另一条生产线对应 D、E、F仓。G仓作为两条生产线共用料仓,仅为 25kg 包装机供料,现场实际根据包装 PVC 粉料牌号进行切仓操作,即需要包装25kg 粉料时两条生产线气力输送系统均切至 G仓,正常运行时每条生产线仅对应一个料仓,项目建成后 7 个料仓最多仅 2 个料仓同时使用。由于项目生产规模不变,因此包装单元涉及排放的粉尘废气污染物排放速率及排放方式发生变化,但颗粒物排放总量及排气筒排放参数均不变。

包装粉仓废气经配套布袋除尘系统(6套)处理后通过10#排气筒排放,与环评报告内容一致,但是10#排气筒排放参数调整为高23.6m、内径0.7m,

#### (4) 聚合废水池废气

本项目生产废水在聚合废水池收集后,通过管道输送至新浦化学南厂区 PVC 离心母液处理系统处理,聚合废水池废水收集过程可能会产生少量有机废气。本项目聚合废水池加盖处理,有机废气通过引风机和管道收集后经"二级活性炭吸附装置"处理后通过 11#排气筒排放(高 25m、内径 0.4m)。

实际建成后,聚合废水池废气处理措施与环评报告内容一致,排气筒排放参数调整为高 25m、内径 0.254m。

#### (5) 危废库废气

本项目危废库用于暂存废包装材料、维修固废、废润滑油、废活性炭等,暂存过程可能有微量有机废气散逸,污染因子为非甲烷总烃。危废库暂存废气经风机收集后通过"二级活性炭吸附装置"处理后通过12#排气筒(高 15m、内径 0.4m)排放。

实际建成后,危废库暂存废气处理措施与环评报告内容一致,排气筒排放参数调整为高 15m、内径 0.6m。

#### (二) 无组织废气

本项目无组织废气污染物主要为排放挥发性有机物(VOCs),主要包括机泵、阀门、 法兰等设备动、静密封处泄漏和污水处理系统、危废库无组织排放。

#### (1) 设备动静密封处泄漏

本项目生产装置及配套设施主要由泵、阀门、法兰和链接件等设备组成,这些输送有机介质的动、静密封点都会存在挥发性有机物(VOCs)的泄漏排放。本项目涉及动静密封点的装置或设施为聚氯乙烯生产装置。

采用《排污许可申请与核发技术规范 石化工业》(HJ853-2017)中核算方法,对机泵、阀门、法兰等设备动静密封点泄漏采用平均组件排放系数法进行核算,项目 PVC 生产装置设备动静密封处泄漏挥发性有机物估算排放量为 5.656t/a。

实际建成后公司已根据要求开展 VOCs 泄漏检测与修复(LDAR)工作,加强生产、物料输送和储存过程挥发性有机物泄漏监测和监管。根据公司近期检测总结报告,对厂内设备动静密封处排放速率进行检测,对 VOCs 排放速率≥500μmol/mol 密封点进行修复,确保正常情况下各动静密封处 VOCs 排放速率小于 500μmol/mol。检测报告表明,本项目各泵、阀门、法兰等设备动静密封点泄漏量约为 0.656t/a,与环评报告估算量相比减少了 5t/a。

#### (2) 危废库未收集废气

本项目危废库废气收集效率按 90%计算,则无组织排放量为非甲烷总烃 0.007t/a。 本项目废气处理实际收集与治理方案见图 4.1.2-1,废气处理设施实际建设情况见 图 4.1.2-2。

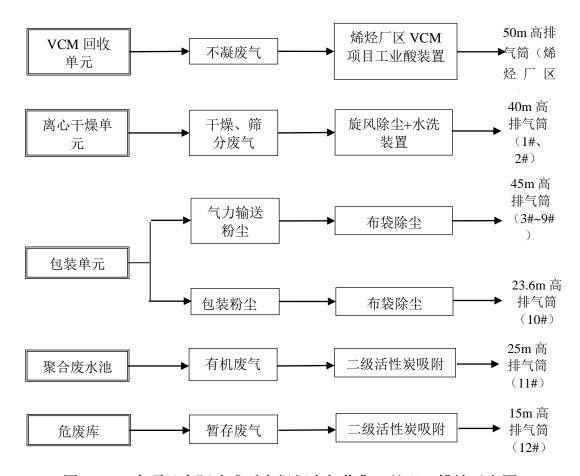



图 4.1-4 本项目实际建成后有组织废气收集、处理、排放示意图



离心干燥单元干燥、筛分废气处理措施(1#、2#排气筒)

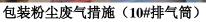


气力输送料仓 C 袋式除尘设施

气力输送料仓 D 袋式除尘设施



气力输送料仓E袋式除尘设施


气力输送料仓F袋式除尘设施



气力输送料仓 G 袋式除尘设施

危废库废气处理措施(12#排气筒)







聚合废水池废气处理措施(11#排气筒)

图 4.1.2-2 废气治理设施图片

本项目废气污染物产生、治理及排放情况见下表。

表 4.1.2-2 大气污染物产生、治理及排放情况表

|                  |                        |                                                                                                                                                             |                                                     | 治理设                                | 扌             | 非放源参数     | <b>X</b> |            |
|------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------|---------------|-----------|----------|------------|
| 污染源              | 污染物种<br>类              | 环评废气<br>治理措施                                                                                                                                                | 现状治理措<br>施                                          | 施监测<br>点设置<br>情况                   | 高度<br>(m<br>) | 内径<br>(m) | 排放<br>形式 | 排放<br>去向   |
| VCM 回<br>收单元     | VCM<br>非甲烷总<br>烃       | 送风<br>VCM<br>工工<br>工<br>工<br>工<br>后<br>碱<br>后<br>碱<br>后<br>碱<br>,<br>是<br>是<br>是<br>是<br>是<br>是<br>是<br>是<br>是<br>是<br>是<br>是<br>是<br>是<br>是<br>是<br>是<br>是 | 送烯烃厂区<br>VCM 项目<br>工业酸装置<br>综合利用后<br>经一级碱洗<br>处理后排放 | 出                                  | 50            | 0.5       |          |            |
| 离心、<br>干燥单<br>元  | 粉尘<br>氯乙烯<br>非甲烷总<br>烃 | 旋风除尘<br>器+水洗装<br>置                                                                                                                                          | 旋风除尘器<br>+水洗装置                                      | 2 套装置<br>进口、<br>出口,<br>共 4 个<br>点位 | 40            | 2         | 有组       | + <i>E</i> |
| 包装单<br>元气力<br>输送 | 粉尘 自带袋式 除尘             |                                                                                                                                                             | 自带袋式除<br>尘                                          | 5#、7#<br>排气筒<br>出口,<br>共 2 个<br>点位 | 45            | 0.4       | 织        | 大气         |
| 包装废气             | 粉尘                     | 袋式除尘                                                                                                                                                        | 袋式除尘                                                | 田口                                 | 23.5          | 0.7       |          |            |
| 聚合废 水池           | 非甲烷总<br>烃              | 二级活性<br>炭吸附装<br>置                                                                                                                                           | 二级活性炭<br>吸附装置                                       | 出                                  | 25            | 0.254     |          |            |
| 危废库              | 非甲烷总<br>烃              | 二级活性<br>炭吸附装<br>置                                                                                                                                           | 二级活性炭<br>吸附装置                                       | 出口                                 | 15            | 0.6       |          |            |

## 4.1.3 噪声

本项目噪声源主要为各类料泵、压缩机、冷却器、离心机、振动筛等设备,设计中 采用了消声、减振等降噪措施。项目噪声源强及排放情况见表 4.1.3-1。

| 序 |           |    | 空间相 | 相对位 | 置/m | 声源源     | 强              |          | 运行时 |
|---|-----------|----|-----|-----|-----|---------|----------------|----------|-----|
| 号 | 声源名称      | 型号 | X   | Y   | Z   | 距声源距离/m | 声功率级<br>/dB(A) | 声源控制措施   | 段   |
| 1 | 各类加料<br>泵 | /  | 185 | 285 | 0   | E, 62   | 85             | 隔声、减振    | 连续  |
| 2 | 离心机       | /  | 158 | 156 | 0   | S, 53   | 85             | 隔声、减振    | 间断  |
| 3 | 压缩机       | /  | 37  | 160 | 0   | E, 45   | 85             | 隔声、减振    | 连续  |
| 4 | 冷却器       | /  | 40  | 150 | 0   | E, 45   | 85             | 消声、隔声、减振 | 连续  |
| 5 | 振动筛       | /  | 176 | 130 | 0   | E, 45   | 80             | 隔声、减振    | 连续  |

表 4.1.3-1 本项目噪声污染源源强核算结果及相关参数一览表

## 4.1.4 固废

根据原环评报告,本项目产生的固体废物主要为废包装材料、维修固废、废润滑油、废油漆桶、废气处理废活性炭、分析废液及员工生活垃圾。实际生产过程中各类固废产生情况具体见表 4.1.4-1。

|   | 田本分秒         | 米中山  | 环评核    | 算情况              | 实际    | 情况  |                     |
|---|--------------|------|--------|------------------|-------|-----|---------------------|
| 号 | 固废名称         | 类别   | 产生量    | 排放量              | 产生量   | 排放量 | <u> </u>            |
| 1 | 废包装材料        | HW49 | 61.77  | 0                | 85    | 0   | 南通海之阳环保工<br>程技术有限公司 |
| 2 | 维修固废         | HW49 | 2.4    | 0                | 1.5   | 0   | 泰州联泰固废处置            |
| 3 | 废润滑油         | HW08 | 6.0    | 0                | 5     | 0   | 有限公司                |
| 4 | 废油漆桶         | HW49 | 2.0    | 0                | 1.2   | 0   | 南通海之阳环保工<br>程技术有限公司 |
| 5 | 废气处理废活<br>性炭 | HW49 | 8      | 0                | 8     | 0   | 泰州联泰固废处置<br>有限公司    |
| 6 | 分析废液         | HW49 | 0.6    | 0                | 0.4   | 0   | 有限公司                |
| 7 | 员工生活垃圾       | 99   | 22.4   | 0                | 22    | 0   | 环卫清运                |
|   | 小计           |      |        | 0                | 123.1 | 0   | /                   |
|   |              | 11   | 103.17 | , and the second |       |     |                     |

表 4.1-4 本项目固体废物产生及处置情况表(t/a)

# 4.2 其他环保设施

注:上表中固体废物实际产生量为根据试运行期间固废产生情况折算全年量。废包装材料实际产生量与环评核算量相比增加,这是由于各类助剂包装规格与环评报告比减少,导致废包装材料数量有所增加,不涉及生产工艺变化。

## 4.2.1 在线监测装置

本项目涉及废水、废气在线监测装置安装位置、数量、型号、监测因子、监测数据 联网情况详见表 4.2.2-1。

| 类型 | 安装位置         | 数量 | 厂家                    | 监测因子  | 联网情况       |
|----|--------------|----|-----------------------|-------|------------|
|    |              | 1  | 北京九波声迪科技有限公司          | 流量计   |            |
| 废水 | 污水总排口        | 1  | 恩德斯豪斯分析仪器(苏州)有限<br>公司 | рН    | 上式加具       |
|    |              | 1  | 安徽皖仪科技股份有限公司          | COD   | 与环保局<br>联网 |
|    |              | 1  | 安徽皖仪科技股份有限公司          | 氨氮    | 4大1~7      |
| 废气 | 1#、2#排气<br>筒 | 1  | 北京雪迪龙科技股份有限公司         | 非甲烷总烃 |            |

表 4.2.2-1 企业废水、废气在线监测装置情况一览表





废水在线监测

废气在线监测

图 4.2.2-1 企业污水、废气在线监测设施

## 4.2.2 环境风险防范设施

## (1) 机构设置

建设单位已建立安全管理网络,制定有各级各部门的安全生产责任制、安全生产管理制度、岗位安全操作规程及应急预案等。建设单位设有专门的安环部门(HSE管理部),配备有专职的安全管理人员,进行公司日常的安全环保监督管理。

公司定期开展应急演练,实现了锻炼队伍、磨合机制的演练目标,通过演练检验了各级应急预案的实用性和可操作性。

## (2) 总图布置安全防范措施

厂区总平面布置及各装置区内平面布置执行《石油化工企业设计防火规范》。本项目总图布局将按照有关设计与防火规范要求进行布局,确保满足与外部防火间距要求。

#### (3) 工艺技术设计安全防范措施

生产工艺选用可靠成熟工艺,工艺控制采用 DCS 和 SIS 安全仪表控制,现有控制室远离生产装置,现场只有定时巡视人员,自动化程度高。DCS 和 SIS 安全仪表控制系统配置设有备用机,采用双电源。关键设备都设有温度、压力控制点及紧急排放措施;存在易燃介质工序都设置可燃气体报警。

本项目涉及危险化学品和危险化工工艺,均按国家安监总局发布的《重点监管的危险化学品安全措施和事故应急处置原则》、《重点监管的危险化工工艺安全控制要求、重点监控参数及推荐的控制方案》等要求来进行设计,提高项目本质安全度。

#### (4) 建筑设计

严格按照相关标准规范落实防火、防爆、防腐蚀、抗震设防、防爆、防静电、防雷 及接地要求。

生产装置、厂房及其它建筑物设计严格遵照《石油化工企业设计防火规范》 GB50160-2008、《建筑设计防火规范》(GB50016-2014)以及有关标准、规范、规定执行。生产或使用易燃、可燃液体的露天生产界区及罐区,在其四周均设有组织排水明沟,并设非燃烧体篦子板,与厂区下水道连接处设水封井,可燃液体贮罐区设防火堤。

考虑到本项目生产工艺特性,易燃、易爆介质的工艺设备、管道采取防静电措施。 对爆炸危险环境装置区中可能产生静电危害的物体如所有工艺金属管道,构件,工艺设备等均做防静电接地。

各主要装置的仪表电源由保安电源(不间断供电电源)供电。仪表用事故电源,采用 UPS 不间断电源,电池供电时间为 60min。重要的工艺机泵、 UPS 电源、事故照明电源及保安电源均引自双电源供给。

#### (5)设备及管道

本项目设备选择国内先进可靠、自动化程度高的设备,对于危险性较大的、重要的 关键性生产设备,由具备有效资质的单位进行设计、制造,并经取得专业资质的检测、 检验机构检测、检验合格后投入使用。

#### (6) 事故池

环评报告要求在厂内建设 1 座有效容积为 3600m3 的事故应急池,实际建设 1 座有

效容积为 4900m³ 的事故应急池,可满足项目事故废水临时贮存要求,事故池已按相关要求做好防腐防渗措施。



图 4.2.1-1 厂内事故池建设情况

此外,公司已按要求编制《新浦化学(泰兴)有限公司突发环境事件应急预案》(编号: XPTX-HJYA-06,版本号:第六版),并于2024年11月在泰州市泰兴生态环境局进行备案(备案编号:321283-2024-217-H)。厂内已按要求配备现场应急物资,落实事故应急防范措施。

| 次·2012 正正压态的英语音情况 2000 |             |    |    |  |
|------------------------|-------------|----|----|--|
| 序号                     | 名称          | 数量 | 单位 |  |
| 1                      | 急救药箱        | 6  | 个  |  |
| 2                      | 消防应急灯       | 若干 | 个  |  |
| 3                      | 有毒气体报警仪     | 若干 | 个  |  |
| 4                      | 可燃气体检测仪     | 13 | 个  |  |
| 5                      | 氧气检测仪       | 2  | 个  |  |
| 6                      | 防爆照明灯       | 8  | 个  |  |
| 7                      | 视频监控        | 若干 | 个  |  |
| 8                      | 长管式空气呼吸器    | 2  | 个  |  |
| 9                      | 消防战斗服       | 8  | 套  |  |
| 10                     | 分体隔热服       | 2  | 套  |  |
| 11                     | 便携式多功能气体检测仪 | 8  | 个  |  |
| 12                     | 便携式氧气检测仪    | 8  | 个  |  |
| 13                     | 封闭式化学防护服    | 12 | 套  |  |

表 4.2.1-2 企业应急物资储备情况一览表

| 序号 | 名称       | 数量  | 单位  |
|----|----------|-----|-----|
| 14 | 酸碱防护服    | 30  | 套   |
| 15 | 化学防护服    | 30  | 套   |
| 16 | 正压式空气呼吸器 | 12  | 个   |
| 17 | 对讲机      | 20  | 个   |
| 18 | 防毒面罩     | 1   | 个/人 |
| 19 | 防爆手电筒    | 20  | 个   |
| 20 | 吸油毡      | 0.1 | 吨   |
| 21 | 木制堵漏楔    | 10  | 盘   |
| 22 | 蛭石       | 1   | 吨   |

# 4.3 排污许可证申请情况

新浦化学(泰兴)有限公司(聚氯乙烯厂)于2024年12月9日独立申领排污许可证,证书编号:913212836087847472004V,有效期限自2024年12月09日至2029年12月08日止。2025年8月,新浦化学(泰兴)有限公司(聚氯乙烯厂)根据《年产50万吨乙烯法聚合技术制备聚铝乙烯项目一般变动影响分析报告》及评审意见申请排污许可证变更,并于2025年9月1日审批通过。

# 4.4 环保设施投资及"三同时"落实情况

本项目实际总投资约 134554 万元, 其中环保投资 1350 万元, 占总投资额的 1.0%。项目废水、废气、噪声、固废、事故应急措施等各项环保设施实际投资情况及环保设施"三同时"落实情况见表 4.4-1 及表 4.4-2。

表 4.4-1 三同时验收一览表

| <br>类别 | 治理对象                      | 治理措施                                                                   | 治理效果                                                                | 环保投<br>资(万                    |
|--------|---------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------|
|        |                           |                                                                        |                                                                     | 元)                            |
|        | 施工粉尘                      | 施工围挡、防尘网;洒水降尘                                                          | 达标排放                                                                | 10                            |
| 施工期    | 施工废水                      | 隔油池、沉淀池                                                                | 达标排放                                                                | 5                             |
|        | 施工噪声、交通噪声                 | 文明施工                                                                   | 达标排放                                                                | 5                             |
|        | VCM 回收单元有机废气              | 送烯烃厂区工业酸装置综合利用                                                         | 达标排放                                                                | /                             |
|        | 干燥、筛分废气                   | 两套旋风除尘器+水洗装置,40m高排气筒(1#、2#)                                            | 粉尘去除效率达 90%                                                         |                               |
|        | 气力输送废气                    | 7 套布袋除尘系统,通过料仓顶排口排出(3#~9#),正常情况下使用其中的 2 套除尘系统和排气筒                      | 粉尘去除效率达 99%                                                         | 10<br>5<br>5<br>/<br>-<br>500 |
| 废气     | 包装废气                      | 6 套布袋除尘系统,23.6m 高排气筒(10#)                                              | 粉尘去除效率达 99%                                                         | 500                           |
|        | 聚合池废气                     | 1 套二级活性炭吸附装置, 25m 高排气筒(11#) 非甲烷总                                       |                                                                     | 300                           |
|        | 危废库废气                     | 1 套二级活性炭吸附装置,15m 高排气筒(12#)                                             | 非甲烷总烃去除效率<br>40%                                                    |                               |
| 废水     | 生产、生活                     | 生产废水依托新浦化学南厂一套 PVC 离心母液处理系统(设计处理能力 220m³/h);生活污水依托新浦化学南厂现有 1#有机污水处理装置。 | 达《烧碱、聚氯乙烯工业<br>污染物排放标准》<br>(GB15581-2016)间接<br>排放标准和园区污水处理<br>厂接管标准 | /                             |
| 噪声     | 噪声 设备噪声 低噪声设备;建筑物隔声;设备减振等 |                                                                        | 达《工业企业厂界环境噪<br>声排放标准》GB12348-<br>2008 中 3 级标准                       | 15                            |
| 固废     | 危险废物                      | 一座占地面积 128m² 危废仓库,委托有资质单位处置                                            | 零排放                                                                 | 10                            |
|        | 生活垃圾 土壤和地下水               | 环卫清运<br>车间、废水收集池、危废库等区域防渗措施建设                                          | 防治污染物渗漏污染土壤 和地下水                                                    | 500                           |
|        | 事故应急措施                    | 建设一座有效容积 4900m³ 事故应急池和事故废水配套收集系统,厂区设                                   | 确保事故发生时对环境影                                                         | 300                           |

| 类别            | 治理对象 | 治理措施                                | 治理效果  | 环保投<br>资(万<br>元) |
|---------------|------|-------------------------------------|-------|------------------|
|               |      | 置雨水截止阀                              | 响降至最低 |                  |
| 清污分流、排污口规范化设置 |      | 排气筒、高噪声设备处等处应按照规范设置标识,醒目处树立环保图形标 志牌 | /     | 5                |
| 卫生防护距离设置      |      | 项目应以 PVC 装置、危废库为起点设置 50m 卫生防护距离     | /     | /                |
|               |      | 合计                                  |       | 1350             |

表 4.4-2 项目环保设施落实情况一览表

| <br>污染源      | 环评设计环保设施                                                               | 实际建设情况                                                    |
|--------------|------------------------------------------------------------------------|-----------------------------------------------------------|
| VCM 回收单元有机废气 | 送烯烃厂区工业酸装置综合利用                                                         | 与环评报告要求一致                                                 |
| 干燥、筛分废气      | 两套旋风除尘器+水洗装置,30m高排气筒(1#、2#)                                            | 两套旋风除尘器+水洗装置,40m 高排气筒<br>(1#、2#)                          |
| 气力输送废气       | 7 套布袋除尘系统,通过料仓顶排口排出(3#~9#),正常情况下使用<br>其中的 6 套除尘系统和排气筒(3#~8#)           | 7 套布袋除尘系统,通过料仓顶排口排出<br>(3#~9#),正常情况下使用其中的 2 套除尘系统<br>和排气筒 |
| 包装废气         | 6 套布袋除尘系统,15m 高排气筒(10#)                                                | 6 套布袋除尘系统, 23.6m 高排气筒(10#)                                |
| 聚合池废气        | 1 套二级活性炭吸附装置, 25m 高排气筒(11#)                                            | 1 套二级活性炭吸附装置,25m 高排气筒<br>(11#)                            |
| 危废库废气        | 1 套二级活性炭吸附装置,15m 高排气筒(12#)                                             | 1 套二级活性炭吸附装置, 15m 高排气筒<br>(12#)                           |
| 生产废水、生活污水    | 生产废水依托新浦化学南厂一套 PVC 离心母液处理系统(设计处理能力 220m³/h);生活污水依托新浦化学南厂现有 1#有机污水处理装置。 | 与环评报告要求一致                                                 |
| 噪声设备         | 低噪声设备;建筑物隔声;设备减振等                                                      | 与环评报告要求一致                                                 |
| 危险废物         | 一座占地面积 128m <sup>2</sup> 危废仓库,委托有资质单位处置                                | 与环评报告要求一致                                                 |
| 生活垃圾         | 环卫清运                                                                   | 与环评报告要求一致                                                 |
| 土壤和地下水       | 车间、废水收集池、危废库等区域防渗措施建设                                                  | 与环评报告要求一致                                                 |
| 事故风险         | 建设一座有效容积 3600m³ 事故应急池和事故废水配套收集系统,厂区设置雨水截止阀                             | 实际事故应急池有效容积为 4900m³, 其他与环<br>评报告要求一致                      |

## 5 建设项目环评报告书的主要结论与建议及审批部门审批决定 5.1 建设项目环评报告书的主要结论与要求

## 5.1.1 大气环境影响评价结论

#### (1) 达标区环境可接受性

本项目各污染物的短期浓度贡献值最大浓度占标率均小于 100%;根据表 6.1-10 计算结果,本项目各污染物的年均浓度贡献值的最大浓度占标率小于 30%;通过计算可知,叠加现状值和区域污染源后 PM<sub>10</sub> 保证日率日平均质量浓度和年均质量浓度均满足环境质量标准要求;非甲烷总烃短期浓度叠加现状监测背景值后均满足相应环境质量标准要求。

#### (2) 大气环境防护距离

采用 2020 全年的常规气象资料,考虑厂内全部废气污染源强(现有+在建+本次新增),设置 50m 的网格局对厂界外各污染物短期贡献浓度超标情况进行计算。根据计算,本项目厂界外各污染物的短期贡献浓度值未出现超标情况,因此,本项目不需设置大气环境防护距离。

根据卫生防护距离估算结果,本项目应以 PVC 装置、危废库为起点设置 50m 卫生防护距离。

根据新浦化学公司现有项目环评报告及批复,现有项目卫生防护距离包络线设置情况为:南厂A区以离子膜烧碱装置外 800m 范围;南厂B区以厂界外 800m 范围;北厂区以乙苯-苯乙烯装置外 500m、VCM 罐区外 1000m、厂界外 300m。因此,本项目建成后,新浦化学公司卫生防护距离设置包络线为:南厂A区以离子膜烧碱装置外 800m 范围;南厂B区以厂界外 800m 范围;北厂区以乙苯-苯乙烯装置外 500m、VCM 罐区外 1000m、厂界外 300m;烯烃厂区以乙烯装置、球罐区、火炬、现有危废暂存库、VCM 装置、VCM 储罐区、EDC 罐区、新建危废暂存库为起点设置 50m 卫生防护距离;本次新征地块:PVC 装置、危废库为边界外 50m 范围。

据调查,目前在此范围内主要为本项目自身用地和周边道路,无居民等环境敏感目标,此范围内以后也不得建设环境敏感目标。

## 5.1.2 地表水环境影响评价结论

本项目各类生产废水、初期雨水由管道输送至新浦化学南厂区离心母液处理系统深度处理后回用于本项目装置聚合单元,该系统产生的再生废水经酸碱中和预处理;生活污水输送至新浦化学南厂区现有 1#有机废水处理设施预处理,以上废水处理达接管标准后一起排入园区工业污水处理厂集中处理。因此污水排放地表水环境影响分析直接引用《泰兴市滨江污水处理厂二期扩建工程项目环境影响报告书》和《泰兴经济开发区 5万吨/日工业污水处理工程项目环境影响报告书》结论,项目废水排放对区域水环境影响可接受。

#### 5.1.3 地下水环境影响评价结论

#### (1) 水文地质条件评价

基于现场调查、水位监测以及地勘资料,确定评价区域内的地下水类型为孔隙潜水,地下水主要接受大气降水补给、向地势较低的区域径流排泄。

浅层(潜)水开采量甚少,区域几乎没有开采,水位处于原始状态,水位埋深 1.0~ 3.0m。浅层地下水水质较差,深层水水质较好,埋藏越深水质越好。

#### (2) 地下水环境影响预测

根据计算结果,当厂区非正常工况下发生污废水泄漏后,预测 COD 在地下水中浓度的变化:非正常状况下: COD1000d 扩散到 0.9m,5a 将扩散到 1.3m,10 年将扩散到 2.2m,20 年将扩散到 3.5m,30 年将扩散到 5m 以外; VCM 在地下水中浓度的变化:非正常状况下: VCM 1000d 扩散到 0.7m,5a 将扩散到 1.0m,10 年将扩散到 1.8m,20 年将扩散到 3.0m,30 年将扩散到 4.5m 以外。

#### (3) 建议

尽管污废水对地下水影响较小,但是地下水一旦污染,很难恢复。因此,发生污染物泄露事故后,必须立即启动应急预案,分析污染事故的发展趋势,并提出下一步预防和防治措施,迅速控制或切断事件灾害链,对污水进行封闭、截流,抽出污水送污水处理场集中处理,使污染扩散得到有效抑制,最大限度地保护下游地下水水质安全,将损失降到最低限度。

#### 5.1.4 噪声环境影响评价结论

预测结果表明,项目厂界预测点噪声均能满足《工业企业厂界环境噪声排放标准》

(GB12348-2008) 3 类标准的要求。

#### 5.1.5 固体废物环境影响评价结论

本项目产生的各类固废均得到安全合理的处置,固废零排放,对外环境影响可接受。

#### 5.1.6 风险评价结论

本项目的风险事故重点考虑氯乙烯料槽或聚合单元反应釜破裂引起的有害物质泄漏,氯乙烯火灾爆炸产生的次生/伴生污染等。根据风险分析结果,在采取风险防范措施、建立应急预案的情况下,本项目发生风险事故后,对周边环境的影响可接受。

## 5.2 审批部门审批决定

泰州市生态环境局《关于新浦化学(泰兴)有限公司年产50万吨乙烯法聚合技术制备聚氯乙烯项目环境影响报告书的批复》(泰环审(泰兴)〔2022〕224号)意见如下:

- 一、你公司应对《报告书》的内容和结论负责,南京国环科技股份有限公司对其编制的《报告书》承担相应责任。
- 二、根据《报告书》及《评估意见》结论,在污染防治措施、事故风险防范减缓措施及环境风险应急预案落实的前提下,从环境保护角度考虑,同意该项目在泰兴经济开发区闸南路东侧、苏伊士公司南侧、运河南路南侧、疏港路北侧建设。项目规模和建设内容详见《报告书》P139-143页,公用及辅助工程详见《报告书》P147-154页,主要设备详见《报告书》P187-196页。你公司不得擅自扩大生产规模、增加生产品种或改变生产工艺等。
- 三、你公司在工程设计、建设和运行管理过程中必须落实《报告书》提出的各项环保要求及建议,落实"以新带老"措施,严格执行"三同时",并着重做好以下工作:
- 1、加强施工期管理,注重生态环境保护,对施工期废水、扬尘、噪声、建筑垃圾等进行收集,治理和控制。
- 2、采用先进的生产设备和工艺,将清洁生产、节能降耗和循环经济理念贯穿于生产全过程,杜绝"跑、冒、滴、漏",避免发生污染事故,同时加强生产管理,将污染物排放降至最低程度。
- 3、按照"雨污分流、清污分流、分类收集、深度处理、分质回用"的原则设计全厂排水系统及废水处理处置方案。聚氯乙烯生产和清洗废水、处理废气废水、水环泵废水、初期雨水等收集至公司南厂PVC离心母液处理系统深度处理后回用于生产,不得外

排。离心母液处理系统产生的再生废水经酸碱中和预处理,生活污水输送至新浦化学南厂区现有1#有机废水处理设施预处理,以上废水处理达接管标准后一起接管至泰兴经济开发区工业污水处理厂深度处理。

4、采取切实有效的飞起污染防治措施,从源头进行控制,对工艺废气收集治理。 VCM回收单元PSA变压吸附产生的驰放气收集至新浦化学烯烃厂区VCM项目工业酸装置综合利用,废气经"一级碱洗"装置处理,尾气通过50米高排气筒排放;干燥、筛分废气收集至二套"旋风除尘器+水洗装置"处理,尾气分别通过二根30米高排气筒排放;包装单元气力输送粉尘分别经各自料仓自配的"布袋除尘装置"处理,尾气通过6根45米高排气筒排放;包装粉尘收集至"布袋除尘装置"处理,尾气通过15米高排气筒排放;聚合废水池废气收集至"二级活性炭吸附装置"处理,尾气通过25米高排气筒排放;危废库废气收集至"二级活性炭吸附装置"处理,尾气通过15米高排气筒排放;危

采用密封的设备、泵和管道输送物料,储罐呼吸废气、污水处理站废气收集处置、实施设备泄漏检测与修复(LDAR)制度等措施减少无组织排放废气。本项目有组织、、无组织排放废气执行《挥发性有机物无组织排放控制标准》(GB37822-2019)、《烧碱、聚氯乙烯工业污染物排放标准》(GB15581-2016)、《石油化学工业污染物排放标准》(GB31571-2015)要求(详见《报告书》表2.6-8、9)。

- 5、合理规划生产布局,选用低噪设备,采取有效的噪声防治措施,确保厂界噪声符合《工业企业厂界环境噪声排放标准》(GB12348-2008)表1中3类区标准。
- 6、按照"减量化、资源化、无害化"原则,对生产过程中产生的各类固废妥善处理或综合利用。废包装材料、维修固废、废润滑油、废油漆桶、分析废液、废气处理废活性炭等危险废物须委托有资质单位处置或综合利用,所有危险废物转移须按规定办理危险废物转移审批手续;生活垃圾委托当地环卫部门处理。危险废物堆场应严格按照《危险废物贮存污染控制标准》(GB18597-2001)要求建设,采取防雨淋、防扬散、防渗漏、防流失等措施。废物临时堆场均应按照《环境保护图形-固体废物贮存(处置场)》(GB15562.2-1995)要求设置环保标志牌。严格执行危险废物管理制度,强化危险废物暂存及运输的环境保护措施,确保暂存及运输过程不发生环境安全事故。
- 7、根据《报告书》中厂区实行分区防渗的要求对相关区域进行防渗处理。项目工艺废水管线应采取地上明渠明管或架空敷设,工艺废水管线、生产装置、罐区、固体废物贮存场所及其他污染区地面进行防腐、防渗处理,不得污染土壤和地下水。

- 8、按照《报告书》要求,进一步落实各项环境风险防范和事故减缓措施,制定环境风险应急预案。配备现场应急物资,设置足够容积的事故废水应急池,建立健全各项环保管理制度,落实环保工作责任制,加强环境安全管理,定期组织开展环境风险应急预案演练,杜绝污染事故发生。
- 9、按《江苏省排污口设置及规范化整治管理办法》、《全省排污单位自动监测监控全覆盖(全联全控)工作方案》(苏环办〔2021〕146号)有关要求,规范化设置各类排污口和标志,并按相关要求建设、安装自动监控设备及其配套设施。落实《报告书》提出的环境管理及监测计划。

四、按《江苏省排污口设置及规范化整治管理办法》、《全省排污单位自动监测监控全覆盖(全联全控)工作方案》(苏环办〔2021〕146号)有关要求,规范化设置各类排污口和标志,并按相关要求建设、安装自动监控设备及其配套设施。落实《报告书》提出的环境管理及监测计划。

五、项目的污染防治设施及环境风险防范措施必须与主体工程同时建成并投入使用, 并按规定申办项目竣工环保验收手续。

六、对照《关于做好生态环境和应急管理部门联动工作的意见》(苏环办〔2020〕 101号)中的相关要求,针对本项目涉及的环境治理设施,主动与应急管理部门对接, 尽快开展安全风险辨识管控工作,按规定主动履行安全相关手续,健全内部污染防治设 施稳定运行和管理责任制度,严格依据标准规范建设环境治理设施,确保环境治理设施 安全、稳定、有效运行。

七、本批复自下达之日起5年内有效。本工程5年后方开工建设或项目的性质、规模、 地点、工艺或防止污染、防治生态破坏的措施等发生重大变动的,须重新报批该项目的 环境影响评价文件。

泰州市泰兴生态环境综合行政执法局负责该项目的环境监管工作。

## 6 验收执行标准

## 6.1 废水排放标准

根据环评报告:本项目各类 PVC 生产废水经新浦化学南厂在建 PVC 离心母液处理系统深度处理后回用于本项目装置聚合单元,该系统产生的再生废水经酸碱中和预处理; 生活污水输送至新浦化学南厂区现有 1#有机废水处理设施预处理;以上废水处理达接管标准后一起排入园区工业污水处理厂集中处理。

实际项目建成后,污水处理去向及排放标准与环评报告内容一致,总排口出水水质满足《烧碱、聚氯乙烯工业污染物排放标准》(GB15581-2016)间接排放标准,本项目污水接管及最终排放执行标准具体见表 6.1-1 和表 6.1-2。

|      | TOTAL MENT MENT MENT MENT MENT MENT MENT MENT |                                       |      |      |               |  |  |
|------|-----------------------------------------------|---------------------------------------|------|------|---------------|--|--|
| 序号   | 污染物项目                                         | 控制污染源                                 | 排放限值 |      | 污染物排放监控       |  |  |
| 17 5 | 行架彻坝日                                         |                                       | 直接排放 | 间接排放 | 位置            |  |  |
| 1    | pH 值                                          |                                       | 6~9  | 6~9  |               |  |  |
| 2    | 化学需氧量                                         |                                       | 60   | 250  |               |  |  |
| 3    | 悬浮物                                           |                                       | 30   | 70   | <br>  企业废水总排放 |  |  |
| 4    | 石油类                                           |                                       | 3    | 10   | 1             |  |  |
| 5    | 氨氮                                            | 聚氯乙烯企业                                | 15   | 40   |               |  |  |
| 6    | 总氮                                            |                                       | 20   | 50   |               |  |  |
| 7    | 总磷                                            |                                       | 1.0  | 5.0  |               |  |  |
| 8    | 氯乙烯                                           |                                       | 0    | 0.5  | 车间或生产装置       |  |  |
|      | 录( ) / / / / /                                |                                       | U    | 1.3  | 排放口           |  |  |
| 单台   | 产品基准排水量                                       | 乙烯氧氯化法聚氯                              |      |      | 排水量计量位置       |  |  |
| 辛世   | .) m <del>医</del> 在                           | □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ | 2    | 2.0  | 与污染物排放监       |  |  |
|      | (III <sup>e</sup> /t) pp/                     | <b>乙</b> /炸在业                         |      |      | <b>坎</b>      |  |  |

表 6.1-1 烧碱、聚氯乙烯工业污染物排放标准(GB15581-2016)

| 表 6.1-2 园区工业污水处理 | 【厂排放标准(pH 为无量纲) |
|------------------|-----------------|
|------------------|-----------------|

| 序号 | 项目                    | 排放标准(mg/L)            |
|----|-----------------------|-----------------------|
| 1  | pН                    | 6~9                   |
| 2  | COD                   | ≤30                   |
| 3  | SS                    | ≤10                   |
| 4  | $BOD_5$               | ≤10                   |
| 5  | NH <sub>3</sub> -N    | ≤1.5 (3) <sup>1</sup> |
| 6  | TN                    | ≤15                   |
| 7  | TP                    | ≤0.3                  |
| 8  | 石油类                   | ≤1                    |
| 9  | TDS                   | /                     |
| 10 | 全盐量                   | ≤10000                |
| 11 | 挥发酚                   | ≤0.5                  |
| 12 | 苯酚                    | ≤0.3                  |
| 13 | Cu <sup>2</sup>       | 0.5                   |
| 14 | Cl <sup>2- 2</sup>    | -                     |
| 15 | 1,2-二氯乙烷 <sup>2</sup> | 0.3                   |

| 序号 | 项目               | 排放标准(mg/L) |
|----|------------------|------------|
| 16 | 氯乙烯 <sup>2</sup> |            |

注:[1]13~17号因子接管标准来源:其他有机特征污染物接管标准按照《石油化学工业污染物排放标准》(GB31571-2015)表3中和《化学工业水污染物排放标准》(DB32/939-2020)表1、表4中废水有机特征污染物及排放限值执行;其他行业的污水污染物浓度应满足相应行业的排放标准限值。

[2]清下水排口应满足 COD≤30mg/L。

## 6.2 废气排放标准

本项目废气污染物主要为氯乙烯、非甲烷总烃,排放标准执行《烧碱、聚氯乙烯工业污染物排放标准》(GB15581-2016)表4大气污染物特别排放限值;颗粒物、非甲烷总烃无组织排放参照执行《石油化学工业污染物排放标准》(GB31571-2015),详见下表。

表 6.2-1 《烧碱、聚氯乙烯工业污染物排放标准》(GB15581-2016)

| <del></del><br>序号 | 污染物项目          | 控制污             | <b>テ</b> 染源   | 排放限值              | 污染物排放监                 |
|-------------------|----------------|-----------------|---------------|-------------------|------------------------|
|                   | 17条物项目         | 企业类型            | 污染源           | mg/m <sup>3</sup> | 控位置                    |
| 1                 | 颗粒物            | 烧碱企业、聚氯<br>乙烯企业 | 聚氯乙烯干燥        | 60                |                        |
| 2                 | 氯乙烯            | 聚氯乙烯企业          | 聚氯乙烯制备<br>和干燥 | 10                | <br>  污染物净化设<br>  施排放口 |
| 3                 | 非甲烷总烃(以碳<br>计) | 聚氯乙烯企业          | 聚氯乙烯制备<br>和干燥 | 20                | 地採以口                   |
| 4                 | 单位产品非甲烷总焓      | A排放量(kg/t)      | 聚氯乙烯企业        | 0.2               |                        |

表 6.2-1 (续) 企业边界大气污染物浓度限值

| 序号 | 污染物项目 | 控制污染源  | 浓度限值<br>mg/m³ | 监控点  | 标准来源         |
|----|-------|--------|---------------|------|--------------|
| 1  | 颗粒物   | /      | 1.0           | 企业边界 | GB31571-2015 |
| 2  | 氯乙烯   | 聚氯乙烯企业 | 0.15          | 正业及介 | GB15581-2016 |
| 3  | 非甲烷总烃 | /      | 4.0           | 企业边界 | GB31571-2015 |

厂内非甲烷总烃执行《化学工业挥发性有机物排放标准》(DB32/3151-2016)标准, 具体见表 6.2-2:

表 6.2-2 厂内非甲烷总烃排放标准

|              |           |                         | 皮度限值<br>g/m³)          | 排气        | 无组织排放<br>监控浓度限    |                                          |
|--------------|-----------|-------------------------|------------------------|-----------|-------------------|------------------------------------------|
| 废气源          | 污染物       | 最高允许<br>排放浓度<br>(mg/m³) | 最高允许排<br>放速率<br>(kg/h) | 筒高<br>(m) | 直<br>位<br>(mg/m³) | 标准                                       |
| PVC 生<br>产装置 | 非甲烷<br>总烃 | 80                      | 7.2                    | 15        | 见下表               | 《化学工业挥发性有机<br>物排放标准》<br>(DB32/3151-2016) |

表 6.2-2(续) 厂区内 VOCs 无组织废气排放限值

| 污染物项目 | 特别排放限值<br>(mg/m³) | 限值含义          | 无组织排放监控位置         |
|-------|-------------------|---------------|-------------------|
| 非甲烷总烃 | 6.0               | 监控点处 1h 平均浓度值 | 在厂房外设置监控点         |
|       | 20.0              | 监控点处任意一次浓度值   | <i>江川历</i> 介以且血狂品 |

## 6.3 厂界噪声标准

本项目营运期噪声排放执行《工业企业厂界环境噪声排放标准》(GB12348-2008) 3 类标准,具体标准限值见表 6.3-1。

表 6.3-1 厂界噪声标准限值

单位: LeqdB(A)

| 标准  | 昼间 | 夜间 |
|-----|----|----|
| 3 类 | 65 | 55 |

## 6.4 固废执行标准

根据环评报告,危险废物暂存场所执行《危险废物贮存污染控制标准》(GB18597-2001)及其修改单的相关要求。

实际建成后危险废物暂存场所标准更新为《危险废物贮存污染控制标准》(GB18597-2023)。

## 6.5 总量控制指标

本项目实际建成后污染物排放量与《年产 50 万吨乙烯法聚合技术制备聚氯乙烯项目环境影响报告书》及批复(泰环审(泰兴)〔2022〕224 号)相比有所变化,变化情况主要为废气部分。实际建成试运行期间,根据监测结果,干燥、筛分废气(1、2#排气筒)污染物非甲烷总烃实际废气排放量为 5.237t/a,与环评报告相比增加了 4.997t/a。

为此,公司对厂内生产装置涉及的各类搅拌器、泵、阀门等设备进行改造提升其密封性能,以期达到减少无组织废气排放量目的。具体包括:①高低压出料槽搅拌器机械密封原设计为单端面机械密封,实际建设时改为双端面机械密封,密封性能得到提升;②部分阀门原设计为普通阀门,实际建设时改为波纹管阀门,可进一步减少无组织废气泄漏量;③VCM/R-VCM单体泵原设计使用普通密封形式,实际建设时改为隔离液双端面机械密封。同时,项目建成后公司按照要求开展 VOCs 泄漏检测与修复(LDAR)工作,对厂内设备动静密封处排放速率≥500 μ mol/mol 密封点进行及时修复。根据检测结果,厂内无组织废气污染物非甲烷总烃排放量约可减少 5t/a,全部在装置内经 VCM 回收单元后作为 PSA 变压吸附过程驰放气(G1-1、G2-1、G3-1),送烯烃厂区 VCM 项目工业酸装置综合利用后经一级碱洗处理后排放(去除效率 99.95%,最终排放量为

0.0025t/a)。上述措施实施后,可做到全厂非甲烷总烃排放量与环评报告相比不新增。 综上,本项目建成后污染物排放量见下表。

表 6.5-1 本项目污染物排放量汇总表 (单位: t/a)

| 种类   |      | 污染物名称 | 环评批复  | 量(t/a) | 实际排放量(t/a) |       |
|------|------|-------|-------|--------|------------|-------|
|      |      | 万架初石桥 | 接管量   | 排入环境量  | 接管量        | 排入环境量 |
|      | 水量   |       | 98693 | 98693  | 98693      | 98693 |
|      |      | COD   | 21.71 | 2.96   | 21.71      | 2.96  |
| 房    | そ 水  | SS    | 6.91  | 0.99   | 6.91       | 0.99  |
|      |      | 氨氮    | 0.09  | 0.09   | 0.09       | 0.09  |
|      |      | TP    | 0.01  | 0.01   | 0.01       | 0.01  |
|      |      | 颗粒物   | 2.639 |        | 2.639      |       |
|      | 有组织  | 氯乙烯   | 0.64  |        | 0.64       |       |
| 废气   | 废气   | 非甲烷总烃 | 0.786 |        | 5.786      |       |
| )及"( |      | VOCs  | 1.186 |        | 6.186      |       |
|      | 无组织  | 非甲烷总烃 | 5.656 |        | 0.656      |       |
|      | 废气   | VOCs  | 5.6   | 563    | 0.         | 663   |
|      | 危险废物 |       | 0     |        | 0          |       |
| 固废   |      | 一般固废  | 0     |        | 0          |       |
|      |      | 生活垃圾  |       | 0      | 0          |       |

## 7验收监测内容

## 7.1 环境保护设施调试效果

本次竣工环保验收监测是对"年产 50 万吨乙烯法聚合技术制备聚氯乙烯项目"的建设、运行和管理进行全面考核,对环保设施的处理效果和排污状况进行现场监测,以检查各种污染物的防治措施是否达到设计能力和预期效果,并评价其污染物的排放是否符合相关标准和总量控制指标。通过对各类污染物达标排放及各类污染治理设施去除效率的监测,来说明环境保护设施调试效果。

#### 7.1.1 废水

#### 一、1#有机废水处理装置

- (1) 监测点位: 1#有机废水处理装置出口。
- (2) 监测项目: pH、COD、SS、氨氮、TP, 同时监测废水流量。
- (3) 监测频次: 连续监测 2 天, 每天监测 4 次。

#### 二、酸碱中和废水处理装置

- (1) 监测点位: 酸碱中和废水处理站出口;
- (2) 监测项目: pH、COD、SS、氯离子,同时监测废水流量。
- (3) 监测频次: 连续监测 2 天, 每天监测 4 次。

#### 三、总排口

- (1) 监测点位: 总排口;
- (2) 监测项目: pH、COD、SS, 氨氮、总磷、氯离子, 同时监测废水流量。
- (3) 监测频次:连续监测2天,每天监测4次。

#### 三、雨水排口

- (1) 监测点位:雨水排放口。
- (2) 监测因子: pH、COD、SS、氨氮、石油类。
- (3) 监测时间和频次:连续监测2天,每天监测4次。

#### 7.1.2 废气

#### 7.1.2.1 有组织排放

有组织废气监测点位、项目和频次详见表 7.1.2-1。

| 编号 | 污染源名称                 | 监测点位数                       | 监测因子                | 监测频率                |
|----|-----------------------|-----------------------------|---------------------|---------------------|
| 1  | VCM 项目工业酸装置 9#<br>排气筒 | 出口                          | 氯乙烯、非甲烷总烃           |                     |
| 2  | 离心干燥单元                | 出口                          | 低浓颗粒物、氯乙烯、非甲烷<br>总烃 | 11左3回1-2            |
| 3  | 包装单元气力输送废气            | 出口(监测期<br>间仅 5#、7#排<br>放废气) | 低浓颗粒物               | 监测 2<br>天,每天<br>3 次 |
| 4  | 包装单元包装废气              | 出口                          | 低浓颗粒物               |                     |
| 5  | 聚合废水池废气               | 进口、出口                       | 非甲烷总烃               |                     |
| 6  | 危废库废气                 | 进口、出口                       | 非甲烷总烃               |                     |

表 7.1.2-1 有组织废气监测点位、项目和频次

注:经现场踏勘,离心干燥单元、包装单元气力输送废气及包装废气处理设施进口不具备采样条件, 因此仅对其出口废气污染物排放情况进行采样监测。

## 7.1.2.2 无组织排放

- (1)监测点位:厂界上风向布设 1 个参照点,下风向扇形布设 3 个监测点,装置区外 1m、危废库外 1m。
- (2)监测因子: 厂界上风向、下风向点位监测氯乙烯、非甲烷总烃; 装置区外 1m、 危废库外 1m 处监测非甲烷总烃。
  - (3) 监测频次: 连续监测 2 天, 每天监测 3 次。

#### 7.1.3 厂界噪声监测

根据现场踏勘,企业东厂界与周边威立雅环保科技(泰兴)有限公司共用厂界,厂界周边 200m 范围内无宿舍等声环境敏感目标,因此本项目仅对西、北、南侧厂界噪声排放情况进行监测。监测点位、项目和频次详见表 7.1.3-1。

表 7.1.3-1 噪声监测点位、项目和频次

| 序号 | 测点名称     | 监测项目                   | 监测频次     |
|----|----------|------------------------|----------|
| N1 | 北侧厂界外 1m | <b>空光连续 Λ 吉纽 I</b>     | 连续监测2天,每 |
| N2 | 西侧厂界外 1m | 等效连续 A 声级 Leq<br>dB(A) | 天昼、夜各监测一 |
| N3 | 南侧厂界外 1m | dB (A)                 | 次        |

连续监测 2 天,每天昼夜各监测一次,昼间安排在 06:00~22:00,夜间安排在 22:00~06:00。

## 8质量保证及质量控制

本次监测过程严格按照《环境监测技术规范》中的有关规定进行,监测的质量保证按照《环境检测质量控制样的采集、分析控制细则》中的要求,实施全过程质量保证。

监测人员经过考核并持有合格证书;所有监测仪器经过计量部门检定/校准并在有效期内;现场监测仪器使用前后经过校准。监测数据和报告实行三级审核。

## 8.1 监测分析方法

## 8.1.1 水质监测分析方法

水质监测分析方法详见表 8.1.1-1。

| 类别   | 监测项目                      | 分析方法                                                                                                                                                                                               | 检出限       |
|------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|      | pН                        | 水质 pH 值的测定 电极法 HJ1147-2020                                                                                                                                                                         | /         |
|      | 化学需氧<br>量                 | 水质 化学需氧量的测定 重铬酸盐法 HJ 828-2017                                                                                                                                                                      | 4mg/L     |
|      | 悬浮物                       | 水质 悬浮物的测定 重量法 GB/T 11901-1989                                                                                                                                                                      | /         |
|      | 氨氮                        | 水质 氨氮的测定 纳氏试剂分光光度法 HJ 535-2009                                                                                                                                                                     | 0.025mg/L |
| 水和废水 | 总磷                        | 水质 总磷的测定 钼酸铵分光光度法<br>GB/T 11893-1989                                                                                                                                                               | 0.01mg/L  |
|      | 氯离子<br>(Cl <sup>-</sup> ) | 水质 无机阴离子 (F'、Cl'、NO <sub>2</sub> <sup>-</sup> 、Br'、NO <sub>3</sub> <sup>-</sup> 、PO <sub>4</sub> <sup>3-</sup> 、SO <sub>3</sub> <sup>2-</sup> 、SO <sub>4</sub> <sup>2-</sup> )的测定 离子色谱法 HJ 84-2016 | 0.007mg/L |
|      | 石油类                       | 水质 石油类和动植物油类的测定 红外分光光度法 HJ 637-2018                                                                                                                                                                |           |

表 8.1.1-1 水质监测分析方法一览表

#### 8.1.2 大气监测分析方法

废气监测分析方法详见表 8.1.2-1。

| 类别       | 检测项目                                                                                                    | 监测分析方法                                     | 检出限                  |
|----------|---------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------|
|          | 非甲烷总烃                                                                                                   | 固定污染源废气 总烃、甲烷和非甲烷总烃的测定 气相色谱法 HJ 38-2017    | $0.07 \text{mg/m}^3$ |
| 右细       | 氯乙烯                                                                                                     | 固定污染源排气中氯乙烯的测定 气相色谱法 HJ/T 34-1999          | $0.08 mg/m^3$        |
| 有组 织废 气  | 排气温度、<br>排气流速、<br>排气中水分<br>含量 固定污染源排气中颗粒物测定与气态污染物采样方法<br>GB/T16157-1996 及其修改单(环境保护部公告 2017 年<br>第 87 号) |                                            | /                    |
|          | 低浓度颗粒<br>物                                                                                              | 固定污染源废气 低浓度颗粒物的测定 重量法 HJ 836-2017          | $1.0 \text{mg/m}^3$  |
| 无组<br>织废 | 非甲烷总烃                                                                                                   | 环境空气 总烃、甲烷和非甲烷总烃的测定 直接进样-气相色谱法 HJ 604-2017 | $0.07 mg/m^3$        |
| 气        | 氯乙烯                                                                                                     | 固定污染源排气中氯乙烯的测定 气相色谱法 HJ/T 34-              | $0.08 \text{mg/m}^3$ |

表 8.1.2-1 大气监测分析方法一览表

| 类别 | 检测项目 | 监测分析方法 | 检出限 |
|----|------|--------|-----|
|    |      | 1999   |     |

## 8.1.3 噪声监测分析方法

监测单位布点、采样及分析测试方法都选用目前适用的国家和行业标准分析方法、技术规范。监测分析方法详见表 8.1.3-1。

表 8.1.3-1 噪声监测分析方法一览表

| 7    | <b>检测项目</b> | 监测分析方法         | 方法来源          | 检出限 |
|------|-------------|----------------|---------------|-----|
| 厂界噪声 | 等效连续 A 声级   | 工业企业厂界环境噪声排放标准 | GB 12348-2008 | /   |

## 8.2 监测仪器

验收监测所使用的仪器名称、型号详见表 8.2-1。

表 8.2-1 验收主要监测仪器一览表

|     | 仪器编号        | 仪器名称             | 仪器型号              |
|-----|-------------|------------------|-------------------|
|     | NJADT-S-377 | 气相色谱仪            | GC9790II 双 FID    |
|     | NJADT-X-G39 | 真空箱采样器           | MH3051            |
|     | NJADT-X-G30 | 真空箱采样器           | MH3051            |
|     | NJADT-X-G38 | 真空箱采样器           | MH3051            |
|     | NJADT-X-G25 | 真空箱采样器           | MH3051            |
|     | NJADT-X-G23 | 真空箱采样器           | MH3051            |
|     | NJADT-S-376 | 气相色谱仪            | GC9790plus        |
|     | NJADT-X-D33 | 大流量烟尘(气)测试仪      | YQ3000-D 型(20 代)  |
| 有组织 | NJADT-X-D36 | 大流量烟尘(气)测试仪(20代) | YQ3000-D 型(20 代)  |
| 废气  | NJADT-X-D31 | 大流量烟尘(气)测试仪      | YQ3000-D          |
|     | NJADT-X-D29 | 大流量烟尘(气)测试仪      | YQ3000-D          |
|     | NJADT-X-D05 | 大流量烟尘(气)测试仪      | YQ3000-D          |
|     | NJADT-X-D23 | 便携式烟气含湿量检测仪(21代) | MH3041 型          |
|     | NJADT-S-113 | 十万分之一天平          | ME55              |
|     | NJADT-X-D33 | 大流量烟尘(气)测试仪      | YQ3000-D 型(20 代)  |
|     | NJADT-X-D36 | 大流量烟尘(气)测试仪(20代) | YQ3000-D 型 (20 代) |
|     | NJADT-X-D29 | 大流量烟尘(气)测试仪      | YQ3000-D          |
|     | NJADT-X-D05 | 大流量烟尘(气)测试仪      | YQ3000-D          |
| 无组织 | NJADT-S-413 | 气相色谱仪            | GC9790II 双 FID    |

|    | 仪器编号        | 仪器名称   | 仪器型号       |
|----|-------------|--------|------------|
| 废气 | NJADT-X-G23 | 真空箱采样器 | MH3051     |
|    | NJADT-X-G25 | 真空箱采样器 | MH3051     |
|    | NJADT-X-G27 | 真空箱采样器 | MH3051     |
|    | NJADT-X-G29 | 真空箱采样器 | MH3051     |
|    | NJADT-X-G30 | 真空箱采样器 | MH3051     |
|    | NJADT-X-G38 | 真空箱采样器 | MH3051     |
|    | NJADT-S-376 | 气相色谱仪  | GC9790plus |
| 噪声 | NJADT-X-B03 | 多功能声级计 | AWA6228+3  |
| 深尸 | NJADT-X-C03 | 声校准器   | AWA6021A   |

## 8.3 人员资质

所有参加本项目竣工验收监测采样和测试的人员,经考核合格并持证上岗。监测单位南京爱迪信环境技术有限公司检验检测资质认定证书见图 8.3-1。



# 检验检测机构 资质认定证书

名称南京爱迪信环境技术有限公司

地址:江苏省南京市江宁区秣陵街道晋印大道 3008 号 1 幢三层、四层 (211102)

经审查, 你机构已具备国家有关法律、行政法规规定的基本条件和能力, 现予批准, 可以向社会出具具有证明作用的数据和结果, 特发此证。资质认定包括检验检测机构计量认证。检验检测能力及授权签字人见证书附表。

你机构对外出具检验检测报告或证书的法律责任,由 南京爱迪信环境技术有限公司承担。

许可使用标志



201012340086

发证日期:2022 10 10 1 迁 有效期至:2026 105 12 发证机关:

本证书由国家认证认可监督管理委员会监制、在中华人民共和国境内有效。

2002218

#### 图8.3-1 南京爱迪信环境技术有限公司检测资质认定证书

## 8.4 水质监测分析过程中的质量保证和质量控制

水样的采集、运输、保存、实验室分析和数据计算的全过程均按照《污水监测技术规范》(HJ 91.1-2019)、《地下水环境技术检测规范》(HJ/T 164-2004)以及各监测项目标准分析方法规定的质量控制要求执行。

| 》二 》th. Alban | 样品数 | 实验室平行     |           | 现场平行  |           | 加标回收率     |           | 全程序空<br>白 | 合格率  |
|---------------|-----|-----------|-----------|-------|-----------|-----------|-----------|-----------|------|
| 污染物           |     | 数量<br>(个) | 比例<br>(%) | 数量(个) | 比例<br>(%) | 数量<br>(个) | 比例<br>(%) | 数量<br>(个) | 百倍平  |
| pH 值          | 32  | /         | /         | 4     | 12.5      | /         | /         | /         |      |
| 化学需氧量         | 32  | 5         | 15.63     | 4     | 12.5      | /         | /         | /         |      |
| 悬浮物           | 32  | /         | /         | /     | /         | /         | /         | /         |      |
| 氨氮            | 24  | 5         | 20.83     | 4     | 16.7      | 2         | 8.33      | /         | 100% |
| 总磷            | 8   | 4         | 25        | 4     | 50.0      | 2         | 25.0      | /         |      |
| 氯离子           | 16  | 2         | 12.5      | 4     | /         | /         | /         | /         |      |
| 石油类           | 8   | /         | /         | /     | /         | /         | /         | /         |      |

表 8.4-2 污水质量控制情况表

## 8.5 气体监测分析过程中的质量保证和质量控制

废气验收监测质量控制与质量保证按照《固定源废气监测技术规范》(HJ/T397-2007)、《固定污染源监测质量保证与质量控制技术规范(试行)》(HJ/T373-2007)、《大气污染物无组织排放监测技术导则》(HJ/T55-2000)以及各监测项目标准分析方法规定的质量控制要求执行,尽量避免被测排放物中共存污染物因子对仪器分析的交叉干扰。

|       |     | •        |     |        |     |       |      |
|-------|-----|----------|-----|--------|-----|-------|------|
|       | 样品数 | 全程序空白    | 加林  | 示回收率   | 实验室 | _     |      |
| 污染物   |     | 数量(个)  数 | 数量  | 比例 (%) | 数量  | 比例    | 合格率  |
|       |     | 数里(十)    | (个) |        | (个) | (%)   |      |
| 非甲烷总烃 | 144 | 2        | /   | /      | 16  | 11.11 | 100% |
| 氯乙烯   | 96  | 2        | /   | /      | /   | /     | 100% |

表 8.5-1 无组织废气质量控制情况表

| # (        | 8.5-2         | 有组:  | ᄺᇠ    | 卢氏  | 电粉 | 出居  | WI # |
|------------|---------------|------|-------|-----|----|-----|------|
| <b>衣</b> ( | o.⊃- <i>∠</i> | 1月组: | '尔/及' | ・し火 | 里江 | 門儿巾 | ルス   |

|       |     | 全程序空白  | 加水        | 示回收率  | 实验室       | 2平行       |        |
|-------|-----|--------|-----------|-------|-----------|-----------|--------|
| 污染物   | 样品数 | 数量 (个) | 数量<br>(个) | 比例(%) | 数量<br>(个) | 比例<br>(%) | 合格率    |
| 非甲烷总烃 | 144 | 2      | /         | /     | 16        | 11.11     | 1,000/ |
| 氯乙烯   | 96  | 2      | /         | /     | /         | /         | 100%   |

## 8.6 噪声监测分析过程中的质量保证和质量控制

测量仪器和校准仪器应定期检验合格,并在有效期内使用;每次测量前、后必须在

测量现场进行声学校准,其前、后校准示值偏差不得大于 0.5dB, 否则测量结果无效。

表 8.6-1 噪声校验情况表

|            |                 |                   |           | t    | 交准值 dB(  | (A)               |      |      | 是     |
|------------|-----------------|-------------------|-----------|------|----------|-------------------|------|------|-------|
| 监测日期       | 声级计型号 及编号       | 声校准器<br>型号及编<br>号 | 标准声<br>源值 | 监测前  | 示值偏<br>差 | <br>  标准声<br>  源值 | 监测后  | 示值偏差 | 产否 合格 |
|            | AWA6228+3       | AWA6021A          | 94.0      | 93.8 | 0.2      | 94.0              | 93.9 | 0.1  |       |
| 2025.05.26 | NJADT-X-<br>B03 | NJADT-X-<br>C03   | 94.0      | 93.8 | 0.2      | 94.0              | 93.8 | 0.2  | 合格    |
|            | AWA6228+3       | AWA6021A          | 94.0      | 93.8 | 0.2      | 94.0              | 93.6 | 0.4  |       |
| 2025.05.27 | NJADT-X-B03     | NJADT-X-<br>C03   | 94.0      | 93.8 | 0.2      | 94.0              | 93.7 | 0.3  | 合格    |

## 9 验收监测结果

## 9.1 生产工况

南京爱迪信环境技术有限公司于 2025 年 5 月 26、5 月 27 日对我公司年产 50 万吨 乙烯法聚合技术聚氯乙烯项目进行验收监测。验收监测期间,本项目主体工程工况稳定、 环境保护设施运行正常,满足竣工环保验收监测工况要求,具体工况见表 9.1-1。

表 9.1-1 验收监测期间生产负荷一览表

| 监测日期      | 主体工程    | 产品名称 | 设计规模      | 验收监测期间生产负荷    |
|-----------|---------|------|-----------|---------------|
| 2025.5.26 | PVC 生产装 | 聚氯乙烯 | 50 万 t/a  | 一线 94%,二线 82% |
| 2025.5.27 | 置       | 承录乙烯 | 30 /J t/a | 一线 75%、二线 82% |

## 9.2 环保设施调试效果

## 9.2.1 污染物达标排放监测结果

接管标准

达标情况

#### 9.2.1.1 废水

本次验收监测于 2025 年 5 月 26 日、5 月 27 日对厂内污水处理站进水、出水水质进行监测,废水监测结果及评价见表 9.2.1-1~表 9.2.1-3。雨水排口监测结果见表 9.2.1-4。

|                         |            |     | 业       | [测项目及监测   | l值(mg/L, | pH 无量纲) |        |
|-------------------------|------------|-----|---------|-----------|----------|---------|--------|
| 测点位置                    | 采样时间       |     | pH 值    | 化学需氧<br>量 | 悬浮物      | 氨氮      | 总磷     |
|                         |            | 第一次 | 7.4     | 110       | 41       | 16.3    | 0.71   |
|                         | 2025.05.26 | 第二次 | 7.5     | 100       | 46       | 16.0    | 0.69   |
|                         | 2023.03.20 | 第三次 | 7.7     | 108       | 39       | 15.4    | 0.69   |
|                         |            | 第四次 | 7.9     | 104       | 43       | 15.8    | 0.76   |
|                         | 均值或范围      |     | 7.4~7.9 | 105.5     | 42.25    | 15.875  | 0.7125 |
| 14岁担 床                  | 接管标准       |     | 6~9     | ≤250      | €70      | ≤40     | < 5    |
| 1#有机废<br>水处理站           | 达标情况       |     | 达标      | 达标        | 达标       | 达标      | 达标     |
| 小处 <sub>运</sub> 站<br>排口 |            | 第一次 | 7.8     | 108       | 37       | 13.4    | 1.00   |
| 111-1-1                 | 2025.05.27 | 第二次 | 7.7     | 105       | 47       | 13.1    | 1.13   |
|                         | 2023.03.27 | 第三次 | 7.6     | 106       | 46       | 12.5    | 1.02   |
|                         |            | 第四次 | 7.6     | 114       | 41       | 12.9    | 0.87   |
|                         | 均值或        | 范围  | 7.6~7.8 | 108.25    | 42.75    | 12.975  | 1.005  |

表 9.2.1-1 厂内污水处理站处理水质情况统计表

表 9.2.1-2 酸碱废水排放水质情况统计表

6~9

达标

≤250

达标

≤70

达标

≤40

达标

< 5

达标

| 测点位置  | <b>亚</b>   | <del>比</del> 简 | 监测功     | 页目及监测值(i | ng/L,pH 无量 | 量纲) |
|-------|------------|----------------|---------|----------|------------|-----|
| 侧总位直  | 采样时间       |                | pН      | 化学需氧量    | 悬浮物        | 氯离子 |
|       |            | 第一次            | 8.0     | 206      | 61         | ND  |
|       | 2025.05.26 | 第二次            | 8.9     | 198      | 58         | ND  |
|       | 2023.03.20 | 第三次            | 8.6     | 212      | 64         | ND  |
|       |            | 第四次            | 8.5     | 205      | 56         | ND  |
|       | 均值或        | 范围             | 8.0~8.9 | 205.25   | 59.75      | /   |
|       | 接管         | 标准             | 6~9     | ≤250     | €70        | ≤40 |
| 酸碱中和废 | 达标'        | 青况             | 达标      | 达标       | 达标         | 达标  |
| 水处理排口 |            | 第一次            | 8.2     | 211      | 68         | ND  |
|       | 2025.05.27 | 第二次            | 8.3     | 214      | 61         | ND  |
|       | 2023.03.27 | 第三次            | 8.2     | 217      | 63         | ND  |
|       |            | 第四次            | 8.2     | 208      | 59         | ND  |
|       | 均值或        | 范围             | 8.2~8.3 | 212.5    | 62.75      | /   |
|       | 接管         | 标准             | 6~9     | €250     | ≤70        | ≤40 |
|       | 达标'        | 青况             | 达标      | 达标       | 达标         | 达标  |

表 9.2.1-3 总排口排放水质情况统计表

|          |            |       |      | 监测项目及     | 上监测值 (n | ng/L,pH = | 无量纲) |     |
|----------|------------|-------|------|-----------|---------|-----------|------|-----|
| 例 点 位置   | 采样时间       |       | pH 值 | 化学需氧<br>量 | 悬浮物     | 氨氮        | 总磷   | 氯离子 |
|          |            | 第一次   | 7.8  | 249       | 67      | 3.67      | 0.40 | ND  |
|          | 2025.05.26 | 第二次   | 8.4  | 243       | 61      | 3.59      | 0.52 | ND  |
|          | 2023.03.20 | 第三次   | 8.3  | 248       | 68      | 3.75      | 0.54 | ND  |
| -        | 第四次        |       | 8.2  | 239       | 63      | 3.71      | 0.49 | ND  |
|          | 均值或        | 均值或范围 |      | 244.75    | 64.75   | 3.68      | 0.49 | /   |
|          | 接管标准       |       | 6~9  | ≤250      | ≤70     | ≤40       | €5   | /   |
| 总排口      | 达标情        | 达标情况  |      | 达标        | 达标      | 达标        | 达标   | 达标  |
| 少出口      |            | 第一次   | 7.9  | 250       | 61      | 3.40      | 0.60 | ND  |
|          | 2025.05.27 | 第二次   | 7.9  | 248       | 57      | 3.21      | 0.57 | ND  |
|          | 2023.03.27 | 第三次   | 8.0  | 242       | 64      | 3.42      | 0.49 | ND  |
|          |            | 第四次   | 8.0  | 245       | 67      | 3.32      | 0.53 | ND  |
| <b> </b> | 均值或        | 均值或范围 |      | 246.25    | 62.25   | 3.34      | 0.55 | /   |
|          | 接管林        | 示准    | 6~9  | ≤250      | ≤70     | ≤40       | €5   | /   |
|          | 达标情况       |       | 达标   | 达标        | 达标      | 达标        | 达标   | 达标  |

表 9.2.1-4 雨水排放监测结果统计表

| —————<br>测点位 |            |     |         | 监测项目      | 及监测值(r | ng/L) |      |
|--------------|------------|-----|---------|-----------|--------|-------|------|
| 置            | 采样时间       |     | рН      | 化学需氧<br>量 | 悬浮物    | 氨氮    | 石油类  |
|              |            | 第一次 | 8.5     | 27        | 29     | 0.791 | 0.60 |
|              | 2025.05.26 | 第二次 | 8.5     | 26        | 31     | 0.738 | 0.54 |
| 雨水排          |            | 第三次 | 8.8     | 27        | 26     | 0.748 | 0.63 |
|              | 口均值或       | 范围  | 8.5~8.8 | 26.67     | 28.67  | 0.76  | 0.59 |
|              | 排放标准       |     | /       | 30        | /      | /     | /    |
|              | 达标情况       |     | /       | 达标        | /      | /     | /    |
|              |            | 第一次 | 8.7     | 26        | 34     | 1.19  | 0.61 |
|              |            | 第二次 | 8.8     | 26        | 26     | 1.22  | 0.58 |
|              | 2025.05.27 | 第三次 | 8.8     | 28        | 31     | 1.30  | 0.66 |
| 雨水排          |            | 第四次 | 8.7     | 27        | 35     | 1.27  | 0.74 |
|              |            | 第五次 | 8.7     | 28        | 37     | 1.24  | 0.51 |
|              | 均值或        | 范围  | 8.7~8.8 | 27.00     | 32.60  | 1.24  | 0.62 |
|              | 排放         | 标准  | /       | 30        | /      | /     | /    |
|              | 达标'        | 情况  | /       | 达标        | /      | /     | /    |

监测结果表明,2025 年 5 月 26 日、5 月 27 日,厂内总排口处废水中 pH 值范围为 7.8~8.4、化学需氧量 242~250mg/L、悬浮物 57~68mg/L、氨氮 3.21~3.75mg/L、总磷 0.40~0.60mg/L、氯离子未检出。雨水排口处 pH 值 8.5~8.8、化学需氧量 26~28mg/L、悬浮物 26~37mg/L、氨氮 1.19~1.30mg/L、石油类 0.51~0.74mg/L。

验收监测期间,厂内总排口处 pH 值、化学需氧量、悬浮物、氨氮、总氮、总磷等污染物均可满足《烧碱、聚氯乙烯工业污染物排放标准》(GB15581-2016)间接排放标准和园区工业污水处理厂接管标准;雨水排口处化学需氧量可满足地方排放要求。

## 9.2.1.2 废气

## (1) 有组织废气

项目有组织废气监测结果见表 9.2.1-3。

表 9.2.1-3 有组织废气监测结果统计表

| 采样时间/<br>采样位置       | 污染<br>物  | 检测项目           | 第一次    | 第二次    | 第三次    | 均值   | 标准限<br>值 | 评价 |
|---------------------|----------|----------------|--------|--------|--------|------|----------|----|
|                     | /        | 烟气温度<br>(℃)    | 36.6   | 36.4   | 36.2   | /    | /        | /  |
| 2025.05.26          | /        | 标干流量<br>(m³/h) | 16796  | 15966  | 16328  | /    | /        | /  |
| 烯烃厂区<br>VCM 项目      | 氯乙       | 排放浓度<br>mg/m³  | ND     | ND     | ND     | /    | 10       | 达标 |
| 工业酸装<br>置 9#排气      | 烯        | 排放速率<br>kg/h   | /      | /      | /      | /    | /        | /  |
| 筒出口                 | 非甲<br>烷总 | 排放浓度<br>mg/m³  | 1.44   | 1.59   | 1.83   | 1.62 | 20       | 达标 |
|                     | 烃        | 排放速率<br>kg/h   | 0.024  | 0.025  | 0.030  | 0.03 | /        | /  |
|                     | /        | 烟气温度<br>(℃)    | 36.6   | 36.7   | 36.5   | /    | /        | /  |
| 2025.05.27          | /        | 标干流量<br>(m³/h) | 17304  | 16709  | 16367  | /    | /        | /  |
| 烯烃厂区<br>VCM 项目      | 氯乙       | 排放浓度<br>mg/m³  | ND     | ND     | ND     | /    | 10       | 达标 |
| 工业酸装置 9#排气          | 烯        | 排放速率<br>kg/h   | /      | /      | /      | /    | /        | 达标 |
| 筒出口                 | 非甲<br>烷总 | 排放浓度<br>mg/m³  | 1.77   | 1.95   | 1.79   | 1.84 | 20       | 达标 |
|                     | 烃        | 排放速率<br>kg/h   | 0.031  | 0.033  | 0.029  | 0.03 | /        | /  |
|                     | /        | 烟气温度<br>(℃)    | 50.6   | 50.1   | 49.5   | /    | /        | /  |
|                     | /        | 标干流量<br>(m³/h) | 110722 | 116022 | 114553 | /    | /        | /  |
|                     | 氯乙       | 排放浓度<br>mg/m³  | ND     | ND     | ND     | /    | 10       | 达标 |
| 2025.05.26<br>1#排气筒 | 烯        | 排放速率<br>kg/h   | /      | /      | /      | /    | /        | 达标 |
| 出口                  | 非甲<br>烷总 | 排放浓度<br>mg/m³  | 1.80   | 1.71   | 1.74   | 1.75 | 20       | 达标 |
|                     | 烃        | 排放速率<br>kg/h   | 0.199  | 0.199  | 0.199  | 0.20 | /        | /  |
|                     | 颗粒       | 排放浓度<br>mg/m³  | 1.4    | 2.8    | 1.7    | 1.97 | 60       | 达标 |
|                     | 物        | 排放速率<br>kg/h   | 0.155  | 0.325  | 0.195  | 0.23 | /        | /  |
| 2025.05.27<br>1#排气筒 | /        | 烟气温度<br>(℃)    | 48.3   | 48.0   | 47.3   | /    | /        | /  |
| 出口                  | /        | 标干流量           | 114852 | 118107 | 120356 | /    | /        | /  |

| 采样时间/<br>采样位置       | 污染<br>物  | 检测项目                      | 第一次   | 第二次   | 第三次   | 均值   | 标准限<br>值 | 评价 |
|---------------------|----------|---------------------------|-------|-------|-------|------|----------|----|
|                     |          | $(m^3/h)$                 |       |       |       |      |          |    |
|                     | 氯乙       | 排放浓度<br>mg/m³             | ND    | ND    | ND    | ND   | 10       | 达标 |
|                     | 烯        | 排放速率<br>kg/h              | /     | /     | /     | /    | /        | 达标 |
|                     | 非甲烷总     | 排放浓度<br>mg/m³             | 2.12  | 2.08  | 2.1   | 2.10 | 20       | 达标 |
|                     | 烃        | 排放速率<br>kg/h              | 0.243 | 0.246 | 0.252 | 0.25 | /        | /  |
|                     | 颗粒       | 排放浓度<br>mg/m³             | 1.5   | 2.2   | 1.6   | 1.77 | 60       | 达标 |
|                     | 物        | 排放速率<br>kg/h              | 0.172 | 0.26  | 0.193 | 0.21 | /        | /  |
|                     | /        | 烟气温度<br>(℃)               | 51.0  | 50.8  | 52.1  | /    | /        | /  |
|                     | /        | 标干流量<br>(m³/h)            | 65644 | 65745 | 60250 | /    | /        | /  |
|                     | 氯乙       | 排放浓度<br>mg/m <sup>3</sup> | ND    | ND    | ND    | ND   | 10       | 达标 |
| 2025.05.26<br>2#排气筒 | 烯        | 排放速率<br>kg/h              | /     | /     | /     | /    | /        | 达标 |
| 出口                  | 非甲<br>烷总 | 排放浓度<br>mg/m³             | 1.76  | 1.94  | 1.8   | 1.83 | 20       | 达标 |
|                     | 烃        | 排放速率<br>kg/h              | 0.116 | 0.128 | 0.108 | 0.12 | /        | /  |
|                     | 颗粒       | 排放浓度<br>mg/m³             | 1.1   | 1.3   | 1.5   | 1.30 | 60       | 达标 |
|                     | 物        | 排放速率<br>kg/h              | 0.072 | 0.085 | 0.09  | 0.08 | /        | /  |
|                     | /        | 烟气温度<br>(℃)               | 51.0  | 50.8  | 49.5  | /    | /        | /  |
|                     | /        | 标干流量<br>(m³/h)            | 61963 | 61185 | 61548 | /    | /        | /  |
|                     | 氯乙       | 排放浓度<br>mg/m³             | ND    | ND    | ND    | ND   | 10       | 达标 |
| 2025.05.27<br>2#排气筒 | 烯        | 排放速率<br>kg/h              | /     | /     | /     | /    | /        | 达标 |
| 出口                  | 非甲<br>烷总 | 排放浓度<br>mg/m³             | 1.8   | 1.66  | 1.95  | 1.80 | 20       | 达标 |
|                     | 烃        | 排放速率<br>kg/h              | 0.112 | 0.102 | 0.12  | 0.11 | /        | /  |
|                     | 颗粒       | 排放浓度<br>mg/m³             | 1.2   | 1.8   | 1.7   | 1.57 | 60       | 达标 |
|                     | 物        | 排放速率<br>kg/h              | 0.074 | 0.11  | 0.105 | 0.10 | /        | /  |
| 2025.05.26          | /        | 烟气温度<br>(℃)               | 38.1  | 37.1  | 35.2  | /    | /        | /  |
| 5#排气筒<br>出口         | /        | 标干流量<br>(m³/h)            | 8045  | 8147  | 8038  | /    | /        | /  |
|                     | 低浓       | 排放浓度                      | 1.2   | 2.1   | 1.9   | 1.73 | 10       | 达标 |

| 采样时间/<br>采样位置        | 污染<br>物   | 检测项目                      | 第一次   | 第二次   | 第三次   | 均值   | 标准限<br>值 | 评价 |
|----------------------|-----------|---------------------------|-------|-------|-------|------|----------|----|
|                      | 度颗        | mg/m <sup>3</sup>         |       |       |       |      |          |    |
|                      | 粒物        | 排放速率<br>kg/h              | 0.01  | 0.017 | 0.015 | 0.01 | /        | /  |
|                      | /         | 烟气温度<br>(℃)               | 36.6  | 35.1  | 33.8  | /    | /        | /  |
| 2025.05.27<br>5#排气筒  | /         | 标干流量<br>(m³/h)            | 8050  | 7951  | 7953  | /    | /        | /  |
| 出口                   | 低浓<br>度颗  | 排放浓度<br>mg/m³             | 1.3   | 2.1   | 1.9   | 1.77 | 10       | 达标 |
|                      | 粒物        | 排放速率<br>kg/h              | 0.01  | 0.017 | 0.015 | 0.01 | /        | /  |
|                      | /         | 烟气温度<br>(℃)               | 36    | 35    | 34    | /    | /        | /  |
| 2025.05.26<br>7#排气筒  | /         | 标干流量<br>(m³/h)            | 7663  | 7231  | 7495  | /    | /        | /  |
| 出口                   | 低浓<br>度颗  | 排放浓度<br>mg/m³             | 2.2   | 2     | 2.3   | 2.17 | 10       | 达标 |
|                      | <b>粒物</b> | 排放速率<br>kg/h              | 0.017 | 0.014 | 0.017 | 0.02 | /        | /  |
|                      | /         | 烟气温度<br>(℃)               | 19.8  | 19.4  | 19.7  | /    | /        | /  |
| 2025.05.27<br>7#排气筒  | /         | 标干流量<br>(m³/h)            | 7711  | 7548  | 7764  | /    | /        | /  |
| 出口                   | 低浓<br>度颗  | 排放浓度<br>mg/m <sup>3</sup> | 2     | 2.5   | 2.2   | 2.23 | 10       | 达标 |
|                      | 粒物        | 排放速率<br>kg/h              | 0.015 | 0.019 | 0.017 | 0.02 | /        | /  |
|                      | /         | 烟气温度<br>(℃)               | 30    | 30    | 30    | /    | /        | /  |
| 2025.05.26<br>10#排气筒 | /         | 标干流量<br>(m³/h)            | 5037  | 5342  | 5206  | /    | /        | /  |
| 出口                   | 低浓<br>度颗  | 排放浓度<br>mg/m³             | 1.9   | 1.8   | 2.1   | 1.93 | 10       | 达标 |
|                      | 粒物        | 排放速率<br>kg/h              | 0.01  | 0.01  | 0.011 | 0.01 | /        | /  |
|                      | /         | 烟气温度<br>(℃)               | 30    | 30    | 29    | /    | /        | /  |
| 2025.05.27<br>10#排气筒 | /         | 标干流量<br>(m³/h)            | 5088  | 5630  | 5189  | /    | /        | /  |
| 出口                   | 低浓<br>度颗  | 排放浓度<br>mg/m³             | 2.9   | 2.6   | 2.7   | 2.73 | 10       | 达标 |
|                      | 及級<br>粒物  | 排放速率<br>kg/h              | 0.015 | 0.015 | 0.014 | 0.01 | /        | /  |
| 2025.05.26<br>聚合废水   | /         | 烟气温度<br>(℃)               | 36    | 41    | 41    | /    | /        | /  |
| 池二级活<br>性炭吸附         | /         | 标干流量<br>(m³/h)            | 1632  | 1651  | 1689  | /    | /        | /  |
| 进口                   | 非甲        | 排放浓度<br>mg/m³             | 3.54  | 3.89  | 4.25  | 3.89 | /        | /  |

| 采样时间/<br>采样位置              | 污染<br>物  | 检测项目           | 第一次     | 第二次     | 第三次     | 均值      | 标准限<br>值 | 评价 |
|----------------------------|----------|----------------|---------|---------|---------|---------|----------|----|
|                            | 烷总<br>烃  | 排放速率<br>kg/h   | 0.00579 | 0.00674 | 0.00723 | 0.00659 | /        | /  |
| 2025.05.26                 | /        | 烟气温度<br>(℃)    | 36.9    | 36.9    | 36.7    | /       | /        | /  |
| 聚合废水<br>池二级活               | /        | 标干流量<br>(m³/h) | 1557    | 1557    | 1590    | /       | /        | /  |
| 性炭吸附<br>排口                 | 非甲<br>烷总 | 排放浓度<br>mg/m³  | 2.34    | 2.51    | 2.45    | 2.43    | 20       | 达标 |
| (11#)                      | 烃        | 排放速率<br>kg/h   | 0.00385 | 0.00366 | 0.00365 | 0.00372 | /        | /  |
| 2025.05.27                 | /        | 烟气温度<br>(℃)    | 30      | 31      | 37      | /       | /        | /  |
| 聚合废水<br>池二级活               | /        | 标干流量<br>(m³/h) | 2109    | 2097    | 2086    | /       | /        | /  |
| 性炭吸附 进口                    | 非甲<br>烷总 | 排放浓度<br>mg/m³  | 3.97    | 3.83    | 3.6     | 3.80    | /        | /  |
| <u> </u>                   | 烃        | 排放速率<br>kg/h   | 0.00866 | 0.00798 | 0.00732 | 0.00799 | /        | /  |
| 2025.05.27                 | /        | 烟气温度<br>(℃)    | 31      | 31.7    | 33.2    | /       | /        | /  |
| 聚合废水<br>池二级活               | /        | 标干流量<br>(m³/h) | 2139    | 2135    | 2141    | /       | /        | /  |
| 性炭吸附<br>排口                 | 非甲烷总     | 排放浓度<br>mg/m³  | 2.7     | 2.48    | 2.64    | 2.61    | 20       | 达标 |
| (11#)                      | 烃        | 排放速率<br>kg/h   | 0.00576 | 0.00528 | 0.0065  | 0.00585 | /        | /  |
| 2025.05.26                 | /        | 烟气温度<br>(℃)    | 22.9    | 21.2    | 22.3    | /       | /        | /  |
| 2025.05.20<br>危废库废<br>气二级活 | /        | 标干流量<br>(m³/h) | 4767    | 4767    | 4764    | /       | /        | /  |
| 性炭吸附 进口                    | 非甲烷总     | 排放浓度<br>mg/m³  | 3.66    | 4.25    | 3.98    | 3.96    | /        | /  |
| <u> </u>                   | 烃        | 排放速率<br>kg/h   | 0.017   | 0.02    | 0.019   | 0.019   | /        | /  |
| 2025.05.26                 | /        | 烟气温度<br>(℃)    | 25.3    | 26.5    | 27.3    | /       | /        | /  |
| 危废库废<br>气二级活               | /        | 标干流量<br>(m³/h) | 5081    | 5508    | 4765    | /       | /        | /  |
| 性炭吸附<br>排口                 | 非甲<br>烷总 | 排放浓度<br>mg/m³  | 1.77    | 1.75    | 1.81    | 1.78    | 20       | 达标 |
| (12#)                      | 烃        | 排放速率<br>kg/h   | 0.00846 | 0.01    | 0.00942 | 0.00929 | /        | /  |
| 2025.05.27                 | /        | 烟气温度<br>(℃)    | 24.1    | 25.0    | 24.7    | /       | /        | /  |
| 危废库废<br>气二级活               | /        | 标干流量<br>(m³/h) | 4738    | 4885    | 4746    | /       | /        | /  |
| 性炭吸附进口                     | 非甲<br>烷总 | 排放浓度<br>mg/m³  | 3.96    | 3.89    | 3.98    | 3.94    | /        | /  |
| · <del>-</del>             | 烃        | 排放速率           | 0.019   | 0.019   | 0.019   | 0.019   | /        | /  |

| 采样时间/<br>采样位置 | 污染<br>物  | 检测项目           | 第一次     | 第二次     | 第三次     | 均值      | 标准限<br>值 | 评价 |
|---------------|----------|----------------|---------|---------|---------|---------|----------|----|
|               |          | kg/h           |         |         |         |         |          |    |
| 2025.05.27    | /        | 烟气温度<br>(℃)    | 26.5    | 27.3    | 28.0    | /       | /        | /  |
| 危废库废<br>气二级活  | /        | 标干流量<br>(m³/h) | 5085    | 5090    | 4893    | /       | /        | /  |
| 性炭吸附<br>排口    | 非甲<br>烷总 | 排放浓度<br>mg/m³  | 1.47    | 1.71    | 1.81    | 1.66    | 20       | 达标 |
| (12#)         | 烃        | 排放速率<br>kg/h   | 0.00671 | 0.00825 | 0.00854 | 0.00783 | /        | /  |

监测结果表明:验收监测期间,各排气筒排放废气污染物颗粒物、氯乙烯、非甲烷总烃等排放浓度均可满足《烧碱、聚氯乙烯工业污染物排放标准》(GB15581-2016)表4大气污染物特别排放限值。

## (2) 无组织废气

无组织废气监测结果见表 9.2.1-5。

表 9.2.1-5 无组织废气监测结果统计表(单位: mg/m³)

| 检测日期       | 检测项目      | 结果  | G1 厂界<br>上风向 | G2 厂界<br>下风向 | G3 厂界<br>下风向 | G4 厂界<br>下风向 | 参考标准 |
|------------|-----------|-----|--------------|--------------|--------------|--------------|------|
|            | 非甲烷总      | 第一次 | 0.58         | 1.11         | 1.18         | 1.08         |      |
|            | 非甲烷总<br>  | 第二次 | 0.60         | 1.10         | 1.19         | 1.09         | 4    |
| 2025.05.26 | 丘         | 第三次 | 0.62         | 1.14         | 1.20         | 1.07         |      |
| 2023.03.20 | 氯乙烯       | 第一次 | ND           | ND           | ND           | ND           |      |
|            |           | 第二次 | ND           | ND           | ND           | ND           | 0.15 |
|            |           | 第三次 | ND           | ND           | ND           | ND           |      |
|            | 非甲烷总      | 第一次 | 0.60         | 1.12         | 1.21         | 1.28         |      |
|            | 字甲灰忌<br>烃 | 第二次 | 0.62         | 1.10         | 1.18         | 1.30         | 4    |
| 2025.05.27 |           | 第三次 | 0.63         | 1.13         | 1.22         | 1.27         |      |
|            |           | 第一次 | ND           | ND           | ND           | ND           |      |
|            | 氯乙烯       | 第二次 | ND           | ND           | ND           | ND           | 0.15 |
|            |           | 第三次 | ND           | ND           | ND           | ND           |      |

厂区内 VOCs 无组织废气排放监测结果见表 9.2.1-6。

表 9.2.1-6 厂区内 VOCs 无组织废气排放监测结果

| 检测日期       | 检测项目  | 结果  | 装置区外 1m | 危废库外 1m | 参考标准 |
|------------|-------|-----|---------|---------|------|
|            |       | 第一次 | 1.46    | 1.60    |      |
| 2025.05.26 | 非甲烷总烃 | 第二次 | 1.47    | 1.58    | 6.0  |
|            |       | 第三次 | 1.48    | 1.61    |      |
|            |       | 第一次 | 1.62    | 1.56    |      |
| 2025.05.27 | 非甲烷总烃 | 第二次 | 1.64    | 1.55    | 6.0  |
|            |       | 第三次 | 1.65    | 1.58    |      |

监测结果表明:验收监测期间,厂界上方向和下风向处非甲烷总烃、氯乙烯监测浓度均可满足《烧碱、聚氯乙烯工业污染物排放标准》(GB15581-2016)和《石油化学工

业污染物排放标准》(GB31571-2015)要求。装置区外 1m、危废仓库外 1m 处 VOCs 无组织废气排放浓度满足《化学工业挥发性有机物排放标准》(DB32/3151-2016)要求。

#### 9.2.1.3 厂界噪声

噪声监测结果与评价见表 9.2.1-7。根据现场踏勘,企业东厂界与周边威立雅环保科技(泰兴)有限公司共用厂界,厂界周边 200m 范围内无宿舍等声环境敏感目标,因此本项目仅对西、北、南侧厂界噪声排放情况进行监测。监测结果表明,验收监测期间,厂界噪声监测点昼、夜间噪声等效声级均满足《工业企业厂界环境噪声排放标准》(GB12348-2008)3 类标准昼间噪声 65dB、夜间噪声 55dB 要求,验收监测期间企业噪声排放达标。

| 检测日期       | 检测点名称    | 检测点<br>编号 | 主要噪声源 | 结果 |      |
|------------|----------|-----------|-------|----|------|
|            | 北侧厂界外 1m | N1        |       |    | 60.7 |
| 2025.05.26 | 西侧厂界外 1m | N2        |       | 昼间 | 59.2 |
|            | 南侧厂界外 1m | N3        | 生产噪声  |    | 61.6 |
| 2025.05.26 | 北侧厂界外 1m | N1        | 土)柴户  | 夜间 | 54.5 |
|            | 西侧厂界外 1m | N2        |       |    | 53.8 |
|            | 南侧厂界外 1m | N3        |       |    | 54.3 |
|            | 北侧厂界外 1m | N1        |       |    | 59.4 |
| 2025.05.26 | 西侧厂界外 1m | N2        |       | 昼间 | 63.8 |
|            | 南侧厂界外 1m | N3        | 生产噪声  |    | 63.5 |
| 2025.05.26 | 北侧厂界外 1m | N1        | 土) 柴戸 |    | 53.4 |
|            | 西侧厂界外 1m | N2        |       | 夜间 | 54.1 |
|            | 南侧厂界外 1m | N3        |       |    | 54.7 |

表 9.2.1-7 厂界噪声监测结果表 (单位: dB(A))

#### 9.2.1.4 污染物排放总量核算

根据现场调查,新浦化学厂内现有1个总排口,排放全厂污水,无法区分本项目废水排放量,因此无法分析本项目废水污染物排放总量达标情况。

本项目废气污染物排放总量核算与评价分别表 9.2.1-8。废气污染物排放总量与控制指标对照见表 9.2.1-9。核算结果表明:本项目废气中颗粒物、非甲烷总烃、VCM等污染物年排放总量均未超出环境影响报告书批复提出的总量控制指标要求。

| 排放口     | 污染物   | 排放速率(kg/h) <sup>1</sup> | 年运行时间<br>(h) | 实际排放总量<br>(t/a) |
|---------|-------|-------------------------|--------------|-----------------|
|         | VCM   | 0.0046                  | 8000         | 0.037           |
| 1#排气筒   | 非甲烷总烃 | 0.0225                  | 8000         | 1.804           |
|         | 颗粒物   | 0.194                   | 8000         | 0.037           |
| 2.4批/左答 | VCM   | 0.0025                  | 8000         | 0.020           |
| 2#排气筒   | 非甲烷总烃 | 0.114                   | 8000         | 0.912           |

表 9.2.1-8 项目废气污染物排放总量核算

| 排放口      | 污染物        | 排放速率(kg/h) <sup>1</sup> | 年运行时间<br>(h) | 实际排放总量<br>(t/a) |
|----------|------------|-------------------------|--------------|-----------------|
|          | 颗粒物        | 0.089                   | 8000         | 0.715           |
| 5#排气筒    | 颗粒物        | 0.014                   | 8000         | 0.112           |
| 7#排气筒    | 颗粒物        | 0.016                   | 8000         | 0.132           |
| 10#排气筒   | 颗粒物        | 0.0125                  | 8000         | 0.10            |
| 11#排气筒   | 非甲烷总烃      | 0.005                   | 8760         | 0.044           |
| 12#排气筒   | 非甲烷总烃      | 0.0898                  | 8760         | 0.079           |
| <u> </u> | 1、"*"为未检出, | 总量按检出限的一半流              | #行计算。        |                 |

## 表 9.2.1-9 有组织废气污染物排放总量与控制指标对照表

| 类别 | 控制项目  | 实际年排放量<br>(t/a) | 环保部门核定指<br>标(t/a) | 是否满足总量 |
|----|-------|-----------------|-------------------|--------|
|    | 颗粒物   | 2.611           | 2.639             | 是      |
| 废气 | 非甲烷总烃 | 2.839           | 5.786             | 是      |
|    | VCM   | 0.057           | 0.64              | 是      |

#### 9.2.2 环保设施去除效率监测结果

本项目 PVC 离心母液处理系统废水经处理后全部回用于生产,生活污水依托新浦化学南厂 1#有机污水处理站处理达接管标准后接入园区工业污水处理厂集中处理,因此本项目未对厂内污水处理站去除效率进行检测。且新浦化学(泰兴)有限公司年产 31万吨高性能苯乙烯聚合物项目(重新报批)一阶段工程已对厂内 1#有机废水处理装置去除效率进行检测,主要废水污染物去除效率为 COD30.0~52.97%、SS52.78~73.33%、氨氮 82.67~90.71%、总磷 21.74~58.72%,可满足环评报告中废水污染物去除效率要求。

经现场踏勘,离心干燥单元、包装单元气力输送废气及包装废气处理设施进口管道 不具备采样条件,因此仅监测其排口处达标情况。聚合废水池废气二级活性炭吸附装置 和危废库二级活性炭吸附装置去除效率见下表。

| 类        | 型     | 废气进口<br>(mg/m³) | 废气出口<br>(mg/m³) | 实际检测去<br>除效率<br>(%) | 环评去除<br>效率<br>(%) | 是否满足环评 |
|----------|-------|-----------------|-----------------|---------------------|-------------------|--------|
| 聚合废水池废 气 | 非甲烷总烃 | 3.54~4.25       | 2.31~2.7        | 11.20~49.52         | 40                | 否      |
| 危废库废气    | 非甲烷总烃 | 3.66~4.25       | 1.47~1.81       | 50.00~64.68         | 40                | 是      |

表 9.2.2-1 本项目各废气处理设施去除效率一览表

验收监测期间,危废库废气配套处理设施(二级活性炭吸附装置)废气污染物去除效率可满足环评要求(去除率 40%),但聚合废水池废气处理设施(二级活性炭吸附装置)废气污染物去除效率部分不能稳定满足环评要求(去除率 40%),这是由于废气污染物去除效率受进口浓度影响,废气污染物进口浓度越低去除效率越低,聚合废水池废气实际监测浓度远远低于环评报告核算浓度(48.52mg/m³),因此聚合废水池废气污染物去除效率监测值与设计相比较低。

## 9.4 "环评批复" 落实情况检查

对照泰州市生态环境局《关于新浦化学(泰兴)有限公司年产 50 万吨乙烯法聚合技术制备聚氯乙烯项目环境影响报告书的批复》(泰环审(泰兴)〔2022〕224 号),实际建设落实情况见下表。

|    | , , , , , , , , , , , , , , , , , , ,                  | ->     |         |
|----|--------------------------------------------------------|--------|---------|
| 序号 | 要求                                                     | 执行情况   | 相符<br>性 |
| 1  | 加强施工期管理,注重生态环境保护,<br>对施工期废水、扬尘、噪声、建筑垃圾<br>等进行收集,治理和控制。 | 已按要求执行 | 相符      |

表 9.4-1 "环评批复"落实情况检查

| 序号 | 要求                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 执行情况                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 相符性 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 2  | 采用先进的生产设备和工艺,将清洁生产、节能降耗和循环经济理念贯穿于生产全过程,杜绝"跑、冒、滴、漏",避免发生污染事故,同时加强生产管理,将污染物排放降至最低程度。                                                                                                                                                                                                                                                                                                                                                                                                     | 已按要求执行。采用先进的生产设备<br>和工艺,杜绝"跑、冒、滴、漏",避<br>免发生污染事故,加强生产管理,将<br>污染物排放降至最低程度。                                                                                                                                                                                                                                                                                                                                                                                                                 | 相符  |
| 3  | 按照"雨污分流、清污分流、分类收集、深度处理、分质回用"的原则设计全厂排水系统及废水处理处置方案。聚氯乙烯生产和清洗废水、处理废气废水、水环泵废水、初期雨水等收集至公司南厂PVC离心母液处理系统深度处理后回用于生产,不得外排。离心母液处理系统产生的再生废水经酸碱中和预处理,生活污水输送至新浦化学南厂区现有1#有机废水处理设施预处理,以上废水处理达接管标准后一起接管至泰兴经济开发区工业污水处理厂深度处理。                                                                                                                                                                                                                                                                            | 已按要求执行。厂内已按"雨污分流、清污分流、分类收集、深度处理、分质回用"原则设计和建设,聚氯乙烯生产和清洗废水、处理废气废水、水环泵废水、初期雨水等均收集至公司南厂PVC离心母液处理系统深度处理后回用于生产,不外排;离心母液处理系统产生的再生废水经酸碱中和预处理,生活污水经新浦化学南厂1#有机废水处理设施预处理,以上废水处理达接管标准后一起接管至泰兴经济开发区工业污水处理厂深度处理。                                                                                                                                                                                                                                                                                        | 相符  |
| 4  | 采取切实有效的飞起污染防治措施,从源头进行控制,对工艺废气收集治理。 VCM 回收单元 PSA 变压吸附产生的现位 YCM 可以集至新浦化学烯烃厂区 VCM 项目工业酸装置综合利用,废气经"一级碱洗"装置处理,尾气通过 50 米高排气筒排放;干燥、筛分废气处理,尾气绝集至 "旋风除尘器+水洗装置"处理,尾气均输送粉尘分别通过二根 30 米高排气筒排放;包育排放;包有一个,不是有一个,不是有一个。 这种,是有一个,不是有一个。 这种,是有一个,不是有一个。 这种,是有一个。 这种,是有一个,是有一个,是有一个,是有一个,是有一个,是有一个,是有一个,是有一个 | 已按要求执行。 (1)实际建成后 VCM 回收单元 PSA 变压 VCM 回收单元 PSA 变压吸附产生的强压 YCM 项目工业酸装置置处 YCM 项目工业酸装置置量 YCM 项目工业酸类 YCM 项目工业 YCM 对 YCM | 相符  |

| 序号 | 要求                                                                                                                                                                                                                                                                                                                    | 执行情况                                                                                                                                                                                                                                                                                             | 相符性 |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|    |                                                                                                                                                                                                                                                                                                                       | (7)根据监测结果,本项目有组织、<br>无组织废气排放均可满足《挥发性有<br>机物无组织排放控制标准》<br>(GB37822-2019)、《烧碱、聚氯乙烯<br>工业污染物排放标准》(GB15581-<br>2016)、《石油化学工业污染物排放标<br>准》(GB31571-2015)要求。                                                                                                                                            |     |
| 5  | 合理规划生产布局,选用低噪设备,采取有效的噪声防治措施,确保厂界噪声符合《工业企业厂界环境噪声排放标准》(GB12348-2008)表1中3类区标准。                                                                                                                                                                                                                                           | 已按要求执行,根据验收监测结果,<br>厂界噪声满足《工业企业厂界噪声排<br>放标准》(GB12348-2008)表1中3<br>类区标准。                                                                                                                                                                                                                          | 相符  |
| 6  | 按照"減量化、资源化、无害化"原则,对生产过程中产生的各类固废妥善处理或综合利用。废包装材料、维修固废、废润滑油、废油漆桶、分析废液、废气处理废活性炭等危险废物须委托有资质单位处置或综合利用,所有危险废物转移须按规定办理危险废物转移审批,手续;生活垃圾委托当地环卫部门处理。危险废物堆场应严格按照《危险废物贮存污染控制标准》(GB18597-2001)要求建设,采取防雨淋、防扬散、防渗漏、防流失等措施。废物临时堆场均应按照《环境保护图形-固体废物贮存(处置场)》(GB15562.2-1995)要求设置环保标志牌。严格执行危险废物管理制度,强化危险废物暂存及运输的环境保护措施,确保暂存及运输过程不发生环境安全事故。 | 本项目建成后,对生产过程中产生的各类固废进行合理处置或综合利用。废包装材料、维修固废、废气处理废活性炭等危险废物委托南通海及阳环病性炭等危险废物委托南通海球泰国废物转移。生程技术有限公司、泰州联泰省场方,有危险废物转移。生活垃圾委托环卫清运处理。厂内现有危废仓库建设满足《危险废物贮存污染控制标准》(GB18597-2023)要求,已采取防雨淋、防扬散、防渗漏、防流失等措施。已按野图形-固体废物贮存(处置场)》(GB15562.2-1995)要求设置环保标志牌。公司已建立并执行危险废物管理制度,强化危废暂存机运输过程中的环境保护措施,确保暂存及运输过程不发生环境安全事故。 | 相符  |
| 7  | 根据《报告书》中厂区实行分区防渗的<br>要求对相关区域进行防渗处理。项目工<br>艺废水管线应采取地上明渠明管或架空<br>敷设,工艺废水管线、生产装置、罐<br>区、固体废物贮存场所及其他污染区地<br>面进行防腐、防渗处理,不得污染土壤<br>和地下水。                                                                                                                                                                                    | 项目已按要求实行分区防渗措施。                                                                                                                                                                                                                                                                                  | 相符  |
| 8  | 按照《报告书》要求,进一步落实各项环境风险防范和事故减缓措施,制定环境风险应急预案。配备现场应急物资,设置足够容积的事故废水应急池,建立健全各项环保管理制度,落实环保工作责任制,加强环境安全管理,定期组织开展环境风险应急预案演练,杜绝污染事故发生。                                                                                                                                                                                          | 公司已按要求落实《报告书》中各项环境风险防范和事故减缓措施,《新浦化学(泰兴)有限公司突发环境事件应急预案》(编号: XPTX-HJYA-06,版本号:第六版),并于 2024 年 11 月在泰州市泰兴生态环境局进行备案(备案编号: 321283-2024-217-H)。                                                                                                                                                         | 相符  |
| 9  | 按《江苏省排污口设置及规范化整治管                                                                                                                                                                                                                                                                                                     | 公司已按相关要求规范化建设各类排                                                                                                                                                                                                                                                                                 | 相符  |

| 序号 | 要求                                                                                                                                                                 | 执行情况                                       | 相符性 |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----|
|    | 理办法》、《全省排污单位自动监测监控<br>全覆盖(全联全控)工作方案》(苏环<br>办〔2021〕146号)有关要求,规范化<br>设置各类排污口和标志,并按相关要求<br>建设、安装自动监控设备及其配套设<br>施。落实《报告书》提出的环境管理及<br>监测计划。                             | 污口,安装自动监控设施及其配套设施。落实《报告书》提出的环境管理<br>及监测计划。 |     |
| 10 | 项目的污染防治设施及环境风险防范措<br>施必须与主体工程同时建成并投入使<br>用,并按规定申办项目竣工环保验收手<br>续。                                                                                                   | 已按要求执行。                                    | 相符  |
| 11 | 对照《关于做好生态环境和应急管理部门联动工作的意见》(苏环办〔2020〕101号)中的相关要求,针对本项目涉及的环境治理设施,主动与应急管理部门对接,尽快开展安全风险辨识管控工作,按规定主动履行安全相关手续,健全内部污染防治设施稳定运行和管理责任制度,严格依据标准规范建设环境治理设施,确保环境治理设施安全、稳定、有效运行。 | 已按要求执行。                                    | 相符  |

## 10 验收监测结论

## 10.1 结论

- (1)新浦化学(泰兴)有限公司年产 50 万吨乙烯法聚合技术制备聚氯乙烯项目根据国家和行业的各项环保要求进行了环境影响评价,工程的环保措施实施和环保设施建设与主体工程同时设计、同时施工、同时投入运行,执行了"三同时"制度。
- (2)南京爱迪信环境技术有限公司对"年产 50 万吨乙烯法聚合技术制备聚氯乙烯项目"进行了验收监测,验收监测期间主体工程工况稳定、环境保护设施运行正常,满足竣工环保验收监测工况要求。
- (3) 经现场踏勘发现,该项目存在 4 处变动,经对照分析均属于一般变动。本项目已编制《年产 50 万吨乙烯法聚合技术制备聚氯乙烯项目一般变动环境影响分析报告》,并于 2025 年 7 月 28 日通过专家技术评审。建设单位已于 2025 年 8 月申请变更排污许可证,并于 2025 年 9 月 1 日通过审核。上述变动发生后该项目仍具有环境可行性,所发生的变动可纳入竣工环境保护验收管理。
- (4) 废水监测结果表明: 厂内总排口处 pH 值、化学需氧量、悬浮物、氨氮、总氮、总磷等污染物均可满足《烧碱、聚氯乙烯工业污染物排放标准》(GB15581-2016)间接排放标准和园区工业污水处理厂接管标准;雨水排口处化学需氧量可满足地方排放要求。雨水排口中 COD 满足不超过 30mg/L 要求。
- (5) 废气监测结果表明:验收监测期间,各排气筒排放废气污染物颗粒物、氯乙烯、非甲烷总烃等排放浓度均可满足《烧碱、聚氯乙烯工业污染物排放标准》(GB15581-2016)表4大气污染物特别排放限值。

验收监测期间,厂界上方向和下风向处非甲烷总烃、氯乙烯监测浓度均可满足《烧碱、聚氯乙烯工业污染物排放标准》(GB15581-2016)和《石油化学工业污染物排放标准》(GB31571-2015)要求。装置区外 1m、危废仓库外 1m 处 VOCs 无组织废气排放浓度满足《化学工业挥发性有机物排放标准》(DB32/3151-2016)要求。

- (6)噪声监测结果表明:验收监测期间,厂界噪声监测点昼、夜间噪声等效声级均满足《工业企业厂界环境噪声排放标准》(GB12348-2008)3类标准昼间噪声 65dB、夜间噪声 55dB 要求,验收监测期间企业噪声排放达标。
- (7) 经总量核算,废气中 VOCs、颗粒物、VCM 等污染物年排放总量均未超出环境影响报告书批复提出的总量控制指标要求。

## 10.2 建议

- (1)加强对废气、废水处理装置、噪声处理装置、固废暂存场所的运行、维护和管理,确保处理设施的长期稳定运行,确保污染物稳定达标排放。
  - (2) 进一步完善环保管理规章制度和事故应急处理措施,防止风险事故的发生。

# 11 建设项目环境保护"三同时"竣工验收登记表

填表单位(盖章):

填表人(签字):

项目经办人(签字):

|        |                  | 血干/: "从人(至 ) /: "从日本// |                       |                       | 2) t (3E 1).   |                          |                        |                       |                              |                       |            |                |                                          |           |
|--------|------------------|------------------------|-----------------------|-----------------------|----------------|--------------------------|------------------------|-----------------------|------------------------------|-----------------------|------------|----------------|------------------------------------------|-----------|
|        | 项目名称             | 年产                     | · 50 万吨乙烯             | 法聚合技术制作               | 备聚氯乙烯项目        |                          | 项目代                    | 码                     | 2020-321283-26-03-<br>350170 | 建设地点                  | Ħ          | 路东侧、<br>(泰兴)   | 《经济开发区<br>威立雅环保<br>有限公司西<br>\$南侧、疏港<br>侧 | 科技<br>侧、  |
|        | 行业类别(分类管理<br>名录) |                        | 化学原料和化学制品制造业 26       |                       |                |                          |                        | :质                    | √新建 □改扩                      |                       | □改扩建 □技术改造 |                |                                          |           |
|        | 设计生产能力           |                        | 50万 t/a               |                       |                |                          | 实际生产能力                 |                       | 50 万 t/a                     | 环评单位                  |            | 南京国环           | 下科技股份有<br>司                              | 限公        |
|        | 环评文件审批机关         | 泰州市生态环境局               |                       |                       | 泰州市生态环境局       |                          | 审批文号                   |                       | 泰环审(泰兴)<br>[2022]224 号       | 环评文件类型                |            | 环境             | 意影响报告书                                   |           |
| 建设项目   | 开工日期             | 2022年12月               |                       |                       |                |                          | 竣工日期 2024年10月          |                       | 排污许可证申<br>领时间                |                       | 2024年12月9日 |                |                                          |           |
| 目      | 环保设施设计单位         |                        | 中国成达工程有限公司            |                       |                |                          | 环保设施施工单位               |                       | 中石化宁波工程有限<br>公司              | 本工程排污许<br>可证编号 913212 |            | 91321283       | 913212836087847472004V                   |           |
|        | 验收单位             | 南京爱迪信环境技术有限公司          |                       |                       |                |                          | 环保设施监测单位               |                       | 南京爱迪信环境技术<br>有限公司            | 验收监测时工<br>况           |            | 达到设计能力的75%     |                                          | 5%        |
|        | 投资总概算(万元)        | 134554                 |                       |                       |                |                          | 环保投资总概算(万元)            |                       | 1350                         | 所占比例<br>(%)           | ħj         |                | 1.0                                      |           |
|        | 实际总投资            |                        | 134554                |                       |                |                          | 实际环保投资(万元)             |                       | 1350                         | 所占比例<br>(%)           | 剂          |                | 1.0                                      |           |
|        | 废水治理 (万元)        | 5                      | 废气治理<br>(万元)          | 510                   | 绿化及生态<br>(万元)  | /                        | 其他(万                   | 元)                    | 835                          |                       |            |                |                                          |           |
|        | 新增废水处理设施能<br>力   |                        |                       | /                     |                |                          | 新增废气处理设施能力             |                       | /                            | 年平均工作时                |            | 8000           |                                          |           |
|        | 运营单位             |                        |                       |                       |                | 运营单位                     | 位社会统一信用代码(或组织机<br>构代码) |                       |                              | 验收时间                  |            |                |                                          |           |
| 污染物排放达 | 污染物              | 原有排<br>放量(1)           | 本期工程<br>实际排放<br>浓度(2) | 本期工程允<br>许排放浓度<br>(3) | 本期工程产<br>生量(4) | 本期工<br>程自身<br>削减量<br>(5) | 本期工程实际<br>排放量(6)       | 本期工程<br>核定排放<br>总量(7) | 本期工程"以新带老"<br>削减量(8)         | 全厂实际<br>排放总量<br>(9)   |            | 一核定排<br>总量(10) | 区域平衡<br>替代削减<br>量(11)                    | 排放增减量(12) |
| 区      | 废水量              | 1826403.11             | /                     | /                     | 98693          |                          | 1925096.11             |                       |                              | 40.9277               |            |                |                                          |           |

|    |        |          |       |          |  |       | 1 |  |
|----|--------|----------|-------|----------|--|-------|---|--|
| 标  | 化学需氧量  | 54.787   | 2.96  | 57.747   |  | 20.46 |   |  |
| 与  | 氨氮     | 2.958    | 0.09  | 3.048    |  | 2.05  |   |  |
| 总  | 总磷     | 0.60     | 0.01  | 0.61     |  | 0.20  |   |  |
| 量  | 总氮     | 25.555   | 0     | 25.555   |  | 6.14  |   |  |
| 控  |        |          |       |          |  |       |   |  |
| 制  | 废气     |          |       |          |  |       |   |  |
| (  | 二氧化硫   | 575.4368 | 0     | 575.4368 |  | 2.16  |   |  |
| 工  | 氮氧化物   | 1613.295 | 0     | 1613.295 |  | 6.29  |   |  |
| 一亚 | 颗粒物    | 1.92     | 2.639 | 4.559    |  | 0.50  |   |  |
| 建  | 挥发性有机物 | 36.87    | 1.186 | 38.056   |  | 12.25 |   |  |
| 设  |        |          |       |          |  |       |   |  |
| 项  |        |          |       |          |  |       |   |  |
| 目目 |        |          |       |          |  |       |   |  |
| 详  |        |          |       |          |  |       |   |  |
| 填  |        |          |       |          |  |       |   |  |
| )  |        |          |       |          |  |       |   |  |

**注**: 1、排放增减量: (+) 表示增加, (-) 表示减少。2、(12)=(6)-(8)-(11), (9) = (4)-(5)-(8)-(11) + (1)。3、计量单位: 废水排放量——吨/年; 废气排放量——万标立方米/年; 水污染物排放浓度——亳克/升

# 附件 1——项目环评批复

# 泰州市生态环境局文件

泰环审 (泰兴) (2022) 224 号

# 关于新浦化学(泰兴)有限公司 年产 50 万吨乙烯法聚合技术制备聚氯乙烯 项目环境影响报告书的批复

新浦化学 (泰兴) 有限公司:

你公司委托南京国环科技股份有限公司编制的《新浦化学 (秦兴)有限公司年产50万吨乙烯法聚合技术制备聚氟乙烯项 目环境影响报告书》(以下简称《报告书》)及泰兴市华兴环境 咨询有限公司技术评估意见(以下简称《评估意见》)收悉,经 研究,提出以下审批意见:

- 一、你公司应当对《报告书》的内容和结论负责,南京国环 科技股份有限公司对其编制的《报告书》承担相应责任。
- 二、根据《报告书》及《评估意见》结论,在污染防治措施、 事故风险防范减缓措施及环境风险应急预案落实的前提下,从环 境保护角度考虑,同意该项目在泰兴经济开发区闸南路东侧、苏

伊士公司西側、运河南路南侧、疏港路北侧建设。项目规模和建设内容详见《报告书》P139-143页,公用及辅助工程详见《报告书》P147-154页,主要设备详见《报告书》P187-196页。你公司不得擅自扩大生产规模、增加生产品种或改变生产工艺等。

三、你公司在工程设计、建设和运行管理过程中必须落实《报 告书》提出的各项环保要求及建议,落实"以新带老"措施,严 格执行"三同时",并着重做好以下工作:

- 加强施工期管理,注重生态环境保护,对施工期废水、 扬尘、噪声、建筑垃圾等进行收集、治理和控制。
- 2、采用先进的生产设备和工艺,将清洁生产、节能降耗和循环经济理念贯穿于生产全过程,杜绝"跑、冒、滴、漏",避免发生污染事故,同时加强生产管理,将污染物排放降至最低程度。
- 3、按照"雨污分流、清污分流、分类收集、深度处理、分质回用"的原则设计全厂排水系统及废水处理处置方案。聚氯乙烯生产和清洗废水、处理废气废水、水环泵废水、初期雨水等收集至公司南厂 PVC 离心母液处理系统深度处理后回用于生产,不得外排。离心母液处理系统产生的再生废水经酸碱中和预处理,生活污水输送至新浦化学南厂区现有 1#有机废水处理设施预处理,以上废水处理达接管标准后一起接管至秦兴经济开发区工业污水处理厂深度处理。
- 4、采取切实有效的废气污染防治措施,从源头进行控制, 对工艺废气收集治理。VCM 回收单元 PSA 变压吸附产生的驰放气

收集至新浦化学烯烃厂区 VCM 项目工业酸装置综合利用,废气经 "一级碱洗"装置处理,尾气通过 50 米高排气筒排放:干燥、 筛分废气收集至二套"旋风除尘器+水洗装置"处理,尾气分别 通过二根 30 米高排气筒排放;包装单元气力输送粉尘分别经各 料仓自配的"布袋除尘装置"处理,尾气通过 6 根 45 米高排气 筒排放;包装粉尘收集至"布袋除尘装置"处理,尾气通过 15 米高排气筒排放;聚合废水池废气收集至"二级活性炭吸附装置" 处理,尾气通过 25 米高排气筒排放;危废库废气收集至"二级 活性炭吸附装置"处理,尾气通过 15 米高排气筒排放。

采用密封的设备、泵和管道输送物料,储罐呼吸废气、污水处理站废气收集处置、实施设备泄漏检测与修复(LDAR)制度等措施减少无组织排放废气。本项目有组织、无组织排放废气执行《挥发性有机物无组织排放控制标准》(GB37822-2019)、《烧碱、聚氯乙烯工业污染物排放标准》(GB15581-2016)、《石油化学工业污染物排放标准》(GB31571-2015)要求(详见《报告书》表2.6-8、9)。

- 5、合理规划生产布局,选用低噪设备,采取有效的噪声防治措施,确保厂界噪声符合《工业企业厂界环境噪声排放标准》 (GB12348-2008)表1中3类区标准。
- 6、按照"减量化、资源化、无害化"原则,对生产过程中产生的各类固废妥善处理或综合利用。废包装材料、维修固废、 废润滑油、废油漆桶、分析废液、废气处理废活性炭等危险废物 须委托有资质单位处置或综合利用,所有危险废物转移须按规定

办理危险废物转移审批手续;生活垃圾委托当地环卫部门处理。 危险废物堆场应严格按照《危险废物贮存污染控制标准》(GB 18597-2001)要求建设,采取防雨淋、防扬散、防渗漏、防流失 等措施。废物临时堆场均应按照《环境保护图形-固体废物贮存 (处置场)》(GB15562.2-1995)要求设置环保标志牌。严格执行 危险废物管理制度,强化危险废物暂存及运输的环境保护措施, 确保暂存及运输过程不发生环境安全事故。

- 7、根据《报告书》中厂区实行分区防渗的要求对相关区域 进行防渗处理。项目工艺废水管线应采取地上明渠明管或架空敷 设,工艺废水管线、生产装置、罐区、固体废物贮存场所及其他 污染区地面应进行防腐、防渗处理,不得污染土壤和地下水。
- 8、按照《报告书》要求,进一步落实各项环境风险防范和 事故减缓措施,制定环境风险应急预案。配备现场应急物资,设 置足够容积的事故废水应急池,建立健全各项环保管理制度,落 实环保工作责任制,加强环境安全管理,定期组织开展环境风险 应急预案演练,杜绝污染事故发生。
- 9、按《江苏省排污口设置及规范化整治管理办法》、《全省排污单位自动监测监控全覆盖(全联全控)工作方案》(苏环办(2021)146号)有关要求,规范化设置各类排污口和标志,并按相关要求建设、安装自动监控设备及其配套设施。落实《报告书》提出的环境管理及监测计划。

四、本项目在发生实际排污行为之前,必须按照《排污许可管理条例》等相关规定领取排污许可证,不得无证排污或不按证

排污。严格落实污染物排放总量指标及控制要求,所有污染物必 须做到达标限量排放。

五、项目的污染防治设施及环境风险防范措施必须与主体工程同时建成并投入使用,并按规定申办项目竣工环保验收手续。

六、对照《关于做好生态环境和应急管理部门联动工作的意见》(苏环办[2020]101号)中的相关要求,针对本项目涉及的环境治理设施,主动与应急管理部门对接,尽快开展安全风险辨识管控工作,按规定主动履行安全相关手续,健全内部污染防治设施稳定运行和管理责任制度,严格依据标准规范建设环境治理设施,确保环境治理设施安全、稳定、有效运行。

七、本批复自下达之日起5年内有效。本工程5年后方开工建 设或项目的性质、规模、地点、工艺或防治污染、防治生态破坏 的措施等发生重大变动的,须重新报批该项目的环境影响评价文 件。

泰州市泰兴生态环境综合行政执法局负责该项目的环境监 管工作。



抄送: 泰州市泰兴生态环境局,泰州市泰兴生态环境综合行政执法局。 泰州市生态环境局办公室 2022 年 11 月 21 日印发

### 附件 2: 排污许可证

# 排污许可证

证书编号: 913212836087847472004V

单位名称:新浦化学(泰兴)有限公司(聚氯乙烯厂)

注册地址:泰兴经济开发区疏港路1号

法定代表人: 林嘉华

生产经营场所地址:泰兴市经济开发区疏港西路17号 行业类别:初级形态塑料及合成树脂制造-聚氯乙烯

统一社会信用代码: 913212836087847472

有效期限: 自2024年12月09日至2029年12月08日止



发证机关: (盖章)泰州市生态环境局

发证日期: 2024年12月09日

中华人民共和国生态环境部监制

泰州市生态环境局印制



# 附件3——污水协议

用原生00 仁新届化学(集成)省现金银污水处理服务协议

# 污水处理服务协议

注意: 下列标准版本仅为提供给潜在用户供其初步了解主要商业合同条款的草稿,公司(中交苏伊士泰兴环境投资有限公司)从递送日至合同签署日之间保留对所有条款及必要修改的解释权,以正式签署的合同为准,如适用。



中交苏伊士泰兴环境投资有限公司

和

新浦化学 (泰兴) 有限公司

图202200世形型化学工业光子有服务的污水处理服务协议

#### 目录

| 第一条  | 定义            |
|------|---------------|
| 第二条  | 陈述和保证5        |
| 第三条  | 污水输送和处理       |
| 第四条  | 乙方工厂和甲方设施的维护8 |
| 第五条  | <b>计量</b> 9   |
| 第六条  | 付款和开票         |
| 第七条  | 法律变更12        |
| 第八条  | 不可抗力          |
| 第九条  | 争议的解决14       |
| 第十条  | 通知            |
| 第十一条 | 其他            |
| 第十二条 | 合同有效期与终止15    |

HIBREROUS 斯爾化亨(華宮)有限公司行水处理服务协员

本污水处理服务协议于2002年 12月 23日(以下称"生效日期")由以下两方签订:

甲方:中交苏伊士泰兴环境投资有限公司、一家在中华人民共和国成立的有限责任台港澳与境内合资企业。其注册地点位于中华人民共和国江苏省泰兴市滨江镇福泰路1号。

君

乙方: 新浦化学 (泰兴) 有限公司, 其注册地址位于泰兴市经济开发区疏港路1号。

鉴于

乙方已在泰兴经济开发区建设、拥有井运行烧碱、氟乙烯、烯烃、原阿贝尔项目工厂、希望由甲方提供与上述工厂运行有关的污水处理服务,并愿意按本协议的条款和条件向甲方设施输送污水。

甲方在泰兴经济开发区澄江西路北侧、滨江路西侧、沙桐公司南侧、长江路东侧地块建设、拥有。 运行和维护一处集中式污水处理设施及配套的工业管河和聚站、以接纳、输送、贮存、处理和处置 泰兴经济开发区内包括乙方在内的多个用户产生的污水、并愿意按本协议的条款和条件自行或委托 第三方向乙方提供污水处理服务。

因此,双方作出如下约定:

福度(2001年展開化學(基本)看個美麗時水便與多場份

#### 第一条 定义

#### 1.1 定义

除非上下文另有要求。本协议(包括本协议的前言)中果用的所有术语应具有以下规定的 相应含义:

"协议" 指本"污水处理服务协议"。包括适时修改的本协议的修订及其附件。

"甲方" 指中交苏伊士泰兴环境投资有限公司。

"乙方" 指新浦化学 (泰兴) 有限公司。

"双方" 是本协议的双方的统称、"一方"指本协议下双方中的任何一方。

"圆区" 指中华人民共和国江苏泰兴经济开发区。

"设施" 指为了接纳、输送。贮存、处理和处置"污水"而由甲方建设、运行和

维护的污水处理厂及配套的工业管网和泵站。

\*乙方工厂" 指乙方在國区建设。拥有和运行的烧碱、氟乙烯、烯烃、原阿贝尔项

日工厂

"污水" 指由乙方按照本协议的条款和条件输送至设施的符合"纳管标准"的污

水。

"纳普标准" 指本协议第3.22条规定的乙方在排放污水时需要符合的各项水质技

术规定。

"排放标准" 指经"设施"处理后的"污水"排放时需达到的水质和水量标准。主要指

标(COD、氦氮。总磷)执行《地表水环境质量标准》(G83838-2002)中 IV 类标准(浓度分别为 30mg/L、1.5(3)mg/L。0.3mg/L,其中当水温小于或等于 12°C时,氦氮排放标准为 3mg/L。当水温大于 12°C时,氦氮排放标准为 1.5mg/L),其它污染因子执行《城镇污水处理厂污染物排放标准+修改单》(GB18918-2002)一级 A 标准、特征污染物中的苯胺类、硝基苯排放浓度执行标准为 0.23mg/L

和 0.91mg/L。

"排污点" 指乙方输送"污水"进入甲方"设施"的交界点。

"超标污水" 指不符合"纳管标准"的任何污水。

"這規排放" 指不符合第 3.2.1 条规定的流量、压力等技术要求,且未经甲方书面

阿意即向甲方设施排水的行为。

THE PROPERTY OF THE PARTY OF TH

"不可抗力事件"

具有本协议第81.1条赋予的含义。

"生效日期"

指在本协议起始部分列出的并按第12.6条的规定开始生效的日期。

"首次排水日期"

指甲方首次允许乙方向 设施 排放污水的日期。

'开票期"

指上个日历月的 21 日至相应日历月的 20 日。第一个开票期应从排水 日期开始,至相应日历月的 20 日结束。如首次排水日期位于 20 日之 后,则第一个开票期为首次排水日期至次月的 20 日结束;而最后一 个开票期应从上个日历月的 21 日开始至本协议终止日期结束。

"人民币"

指中华人民共和国的法定货币。

"污水处理服务费"

指乙方按本协议第61条的规定在各个"开票期"内应向甲方支付的费

用。

"服务补偿费"

指乙方接本协议第63条的规定在各个"开票期"内应向甲方支付的费

用。

"法律"

指由任何"法定机关"签发或颁布的。可适用于任何一方的以及与本协 议中涵盖的污水处理服务业务和环境事宜相关的任何宪法。条约、法 律、法典、法规、法令、指令、规则、决议、司法或行政命令、决定

或地方、行业标准。

法律变更

指"生效日期"后出现的任何由于任何"法定机构"引起的或与之相关的

以下事件中的任何一批

(a) 现行法律的变化或废除;

(b) 颁布或制定新的法律;

(c) 法律适用方式。适用范围或解释之变更。

"法定机关"

指中华人民共和国境内对"设施"。乙方工厂或任何一方或本协议的腰 行具有警辖权的任何国家、省、市的或其他下属的行政、立法、司法 的部门机构,包括但不仅限于任何上述机构直接或间接控制的部、 局、委员会、办公室、处、派出机构、管理机构或部门。人民法院以

及仲裁法庭。

"受托运营方"

指泰兴苏伊士环境技术有限公司及/或其关联方。

#### 1.2 解释

除非本协议的上下文另有要求。否则:

(a) 术谱"本协议"。"其中"。"特此"。"在此"以及类似的词语指整个协议,而不是本协议 的任何特定条款、附件或任何其他细分部分;

B1000200(区际流化等(系数)有限公司污水处理能等特益

- (b) 所用的天、月和年指根据公历采用的日历天、月和年;
- (c) 所用的"条"或"附件"指本协议的"条款"和"附件";
- (d) 如有采用诸如"例如"、"包括"、"在一一之中"、"除了别的以外"之类的字眼和表达方式的地方,其目的不在于暗示只限于列举或规定的事件。因此。此类字眼和表达方式应理解为"例如但不限于"、"包括但不限于"和'诸如此类"的意思。
- (e) 引用的任何法令、法规、通知或法定条款应理解为本协议签订时正在适用的,已经 修改过的,或随时可能修改、更改或重新颁布的同类性质的法令、法规、通知或法 定条款;
- (f) 引用的本协议或任何其他协议或文件应理解为正在执行的。或经适时修改、更改或 补充过的本协议或此类其他协议或文件。应包括修改、更改或补充,或签订、订立 或按其条款给定的任何文件。
- (g) 引用的任何人应理解为包括该人的继承人或允许的受让人。

#### 1.3 文件的优先顺序和模糊或分歧

- 131 作为本协议一部分的条款、附件(如有)互为补充和解释。
- 13.2 如作为本协议组成部分的任何条款或附件(如有)之间或之中出现模糊、矛盾或分歧、双方应本看真诚进行协商并达成修改意见、以消除模糊、矛盾或分歧、但是、前提条件是所述的任何修改应受任何"法律"和"法规"的制约、并应采用以下解释和优先顺序法则(按以下优先顺序);
  - (a) 本协议(即:本文件)应优先于组成本协议的附件和所有其他文件;
  - (b) 有关特定事件的专门的规定应优先于同等事件的通用规定;
  - (c) 应对组成本协议的条款、附件(如有)作出解释、以去除模糊、矛盾或分歧、使之 作为一个整体与本协议相一致。

#### 第二条 陈述和保证

#### 2.1 相互陈述和保证

双方应向对方陈述、保证和承诺:

- (a) 其有权整署本协议并履行本协议义务: 授权其签署和履行本协议所必需的行为均已 完成:
- (b) 簽署和履行本协议不违反其应遵守的任何适用法律或对其有约束力的任何协议或安排。

#### 2.2 守法

双方在任何时候都应遵守适用于该方履行其在本协议下职责的所有相关的法律。

HR202200注题開発学(屬於)有限公司形状处理服务等限

#### 第三条 污水输送和处理

#### 3.1 输送及处理符合纳管标准的污水

- 3.1.1 从首次排水日期开始至本协议期清或终止
- (a) 乙方可通过工业管网及泵站向设施输送符合纳管标准的污水;
- (b) 根据本协议的规定。甲方应使设施具备条件接受来自的乙方的上述污水、并接本协 议和法律的规定连续接纳、贮存、处理和处置上述污水。
- 3.1.2 根据本协议第3条的规定、除非事先得到甲方的书面同意、乙方按照本协议向设施 输送的污水应符合本协议第3.2条中规定的纳管标准。

#### 3.2 纳普标准等技术规格要求

3.2.1 乙方排放的污水水量及排放时间约定如下:

| 指标        | 单位   | 要求                 | 备注                      |
|-----------|------|--------------------|-------------------------|
| 日液量       | m½d  | 平均 3000<br>最高 5000 |                         |
| 年流量       | m³/a | ≤1,826,400         | 现有装置环评最大量               |
| 排放时间      | hr/d | 24                 | 毎天 0:00~24:00           |
| 瞬时流量      | m³/h | 平均 150<br>最高 300   |                         |
| 进入设施的压力要求 | bar  | ≥1.5<br>≤8.0       | 该两项数值需依据现场<br>实际情况做调整优化 |

- (a) 甲方或受托运营方将视设施的实际运行情况与乙方的实际排水情况对排放时间做出相应调整,并书面通知乙方,乙方有义务配合甲方或受托运营方对乙方工厂内的相关排放设施进行调整。乙方拒不配合的。自行承担全部后果。
- (b) 当乙方的瞬时流量、日流量或进入设施的压力超出限制范围时、乙方应与甲方及受托运营方及时沟通并书面告知甲方及受托运营方相关情况、否则甲方有权判定乙方的上述行为为违规排放。

#### 3.2.2 乙方排放的污水水质必须符合以下纳管标准的要求:

| 序号 | 指标               | 単位   | 纳曾标准 |  |
|----|------------------|------|------|--|
|    | 基本               | k 指标 |      |  |
| 1  | pH               | _    | 6-9  |  |
| 2  | 色度               | 稀释倍数 | ≤500 |  |
| 3  | COD。             | mg/L | ≤500 |  |
| 4  | BOD <sub>t</sub> | mg/L | ≤150 |  |
| 5  | 悬浮颗粒物            | mg/L | ≤100 |  |

| 序号 | 指标               | 单位           | 纳管标准     |  |
|----|------------------|--------------|----------|--|
| 6  | 製製               | mg/L         | ≤30      |  |
| 7  | 总氮               | mg/L         | ≤50      |  |
| В  | 总磷               | mg/L         | ≤3.0     |  |
| 9  | 总溶解性总磷-磷酸盐(以P计)  | mg/L         | ≤0.5     |  |
| 10 | 动植物油             | mg/L         | ≤10      |  |
| 11 | 石油类              | mg/L         | ≤20      |  |
| 12 | SO, <sup>2</sup> | mg/L         | ≤2,000   |  |
| 13 | CI CI            | mg/L         | ≤4,000   |  |
| 14 | TDS              | mg/L         | ≤10,000  |  |
| 15 | 阴离子表面活性剂         | mg/L         | ≤20      |  |
| 16 | 水温               | °C           | ≤35      |  |
|    | 特征污染因            | 7            |          |  |
| 17 | 苯                | mg/L         | ≤0.1mg/L |  |
| 18 | 挥发酚              | mg/L         | ≤0.5mg/l |  |
| 19 | 硫化物              | mg/L ≤1.0mg/ |          |  |

- (1) 在乙方工厂的环境影响评价文件和/拉复中。已结合乙方工厂生产工艺及排污特点制 定的水污染物特征因子。需符合其适用的所属行业的相关水污染物排放标准(主要 有《石油化学工业污染物排放标准》(GB31571-2015)、《无机化学工业污染物排 放标准》(GB31573-2015)、《合成树脂工业污染物排放标准》(GB31572-2015)、 《烦碱、聚氧乙烯工业水污染物排放标准》(GB15581-2016)、《合成氨工业水污 染物排放标准》(GB13458-2013)、《杂环类农药工业水污染物排放标准》 (GB21523-2008) . 《铜、镍、钴工业污染物排放标准》 (GB25467-2010) . 《纺织染整工业水污染物排放标准》 (GB4287-2012) 、《电镀污染物排放标准》 (GB21900-2008)、《中药类制药工业水污染物排放标准》(GB21906-2008)、 《化学合成类制药工业水污染物排放标准》(GB21904-2008),《生物工程类制药 工业水污染物排放标准》(GB21907-2008)等);如无适用的行业标准、则需满足 《石油化学工业污染物排放标准》 (GB31571-2015) 表 3 中标准;
- (2) 在乙方工厂的环境影响评价文件和/或批复及排污许可证中未曾提及的特征污染因 子、该指标需符合《城镇污水处理厂污染物排放标准》(GB18918-2002)表 2 和表 3 排放限值要求:
- (3) 对于重金属及其它一类污染物、除了在乙方工厂生产车间或生产装置废水排放口须 满足相应的行业或其它适用的排放标准外,在乙方工厂废水排口处需满足《城镇污 水处理厂污染物排放标准》(GB18918-2002)中表 2 和表 3 的排放要求;
- (4) 如果任何"法定机关"对上述排放标准和行业排放标准进行修改或用新的标准替代、那 么该等指标应符合修改后的排放标准和行业排放标准或新排放标准和行业排放标准 中与原适用标准相对应的标准的要求。

#### 3.3 超标污水输送和公司对其的处理

3.3.1 乙方不得向设施排放任何超标污水、应将其保存在乙方工厂内或其他场所、由乙方 负责进行贮存和处理,并自行支付相关费用和承担相关责任。

HP2032001111日进化学(发现) 程列公司内水处理服务协议

- 3.3.2 如甲方或受托运营方发观乙方排放的污水中任何一项水质指标超过纳管标准、甲方和受托运营方有权立即将超标情况通知乙方、园区环保科和泰兴市生态环境局。并同时采取措施限制或组止超标污水选入甲方设施。在此情形下、甲方有权:
  - (a) 自行或由受托运营方立即发出书面通知禁止乙方继续向设施排水,并在乙方未完全 停止排水期间继续按本协议第613条规定向乙方收取污水处理服务费;
  - (b) 尽勢力处理乙方已排放进入设施的超标污水、但在收取污水处理服务费时、乙方应 按本协议第63条的规定模据第533条计算得出的超标污水量向甲方进行补偿。
- 3.3.3 乙方接到甲方和受托运营方依第3.3.2条发出的超标通知后,应立即停止向甲方设施 排水并在乙方工厂内部采取措施改善排水水质,同时在排水水质符合纳管标准后书 面通知甲方和受托运营方,且提供具备相应检测资质的检测机构提供的有效检测报 告。甲方应在接到通知后3个工作日内视情况安持复检、并在确认水质后书面通知 乙方恢复排水,則从甲方发现此次超标的前一次检测之日起至受托运营方书面同意 乙方恢复排水之日止,该期间为实际超标期间。
- 3.3.4 如乙方的超标污水造成甲方设施停产、减产、失效、超标排放及其他后果、则乙方 应向甲方赔偿因此造成的任何提害。支出、损失。

#### 3.4 水样的采集和分析

- 3.4.1 甲方有权随时在排污点或排污点之后对乙方输送的污水进行水样采集和分析。
- 34.2 甲方有权亲自或聘请第三方机构。受托运营方对上述样品进行分析或测试、双方同意。甲方根据本协议第3.41条取得的样品及其分析结果应为唯一依据、并作为乙方支付本协议下其应付的款项和解决有关争议的基础。

#### 3.4.3 呆集和储存

- (a) 水样的采集和储存应满足国家环保部标准《地表水和污水监测技术规范 HJ/T 91-2002》。《污水监测技术规范 HJ 91.1-2019》。《水质采样技术指导 HJ 494-2009》。
- (b) 每次提取的水样应分装 A、B 两瓶、A 瓶用于甲方自行检测。B 瓶留作备用水样。每瓶备用水样应不少于500 毫升。 瓶上须明确标明采样日期和采样点,进水和出水的备用水样须在4℃保存。保存时限四十八小时。
- 3.4.4 当乙方预测污水的水质可能出现任何变化或异常时、乙方应立即通知甲方及受托运营方,并应向甲方及受托运营方提供所述变化和异常的细节。双方应协商合作、迅速采取必要措施、调查、查清并纠正或避免产生此类变化和异常的诱因。尽势力避免超标污水进入甲方设施。

#### 第四条 乙方工厂和甲方设施的维护

#### 4.1 乙方工厂的大修维护计划

用规则2000年 新洲化学(上京)省图券出售火炉地址外域2

乙方应在每年12月31日前,向甲方提供下一年度的维护和大修计划,包括维护和大修持 续时间,受影响的装置。水质和水量的变化情况等等。在维护和大修计划发生变动的情况 时,乙方应在不少于原定的计划的六十天前向甲方更新维护和大修计划时间及相关信息。

#### 4.2 甲方设施的大修维护计划

根据本协议的条款和条件,甲方应尽势力使设施一直保持正常运行。但是,双方认识到, 甲方需要定期对设施进行维护: 自本协议签署生效之日起每年内甲方累计需要二十天的时 间以便对设施进行维护(年度设施维护计划),且在该维护计划实施期间,乙方应配合甲 方的安排减少输送至设施的污水水量。

#### 第五条 计量

#### 5.1 计量设备

计量表和分析仪由甲方拥有、安装、运行和维护。

#### 5.2 计量表和分析仪的精确度

双方认可所有计量表。分析仪以及所有相关仪表变送器应满足国家或行业标准规定的允许 误差范围。未经甲方同意、乙方不得干扰或擅自拆卸任何计量表或分析仪。如乙方擅自干 扰或擅自拆卸任何计量表或分析仪、每发现一次甲方将向乙方处以 5 万金额的罚款、同时 乙方需承担因此给甲方及受托运营方造成的全部损失。

#### 5.3 计量和抄表

- 5.3.1 乙方向甲方设施排放的污水量以排污点以后甲方拥有并安装的用于计量乙方流量的 流量计的计量为唯一依据、并作为乙方支付本协议下其应付的款项和解决有关争议 的基础。
- 5.3.2 当流量计非正常工作时,当天的污水量采用上一个开票期的日均污水量。
- 5.3.3 超标水量的计量

超标期间的污水处理量为从甲方及/或受托运营方发现超标的前一次排水检测 (该检 测显示污水未超标) 之日至甲方及/或受托运营方书面同意乙方恢复排水期间的水 量。

#### 5.4 计量表和分析仪的测试

- 5.4.1 在本协议有效期内,若乙方提出计量表或分析仪不准确的异议时,则由甲方委托双方书面认可的有资质的第三方校验机构负责复核和校验。经校验后,若计量仪表计量不准确,校验费用由甲方承担,若计量仪表经检验合格。校验费用由乙方承担。若在读等检查中发现计量表或分析仪和相应标准之间存在误差,且该等误差超过允许误差范围,则甲方应立即修理或更换有关计量表或分析仪。
- 5.4.2 乙方故意不通过排污点的计量表或分析仪而向甲方设施偷排以及第3.2.1条规定的违 规排放、对于首次和第二次被发现此类情况、当月污水处理量分别将按乙方上一个

HR200000世前世化学(※於) 智能公司的水处理服务协议

开票期的结算水量的二倍。四倍进行计算、并由乙方承担由此选成的一切经济。法 律责任和后果;若第三次发现此类情况。则当月污水处理量将按乙方上一个开票期 的结算水量的八倍进行计算,且甲方有权拒绝接收乙方的污水;上一个开票期的结 算水量不起过500吨的接500吨计算。

#### 第六条 付款和开票

#### 6.1 污水处理服务费

- 6.1.1 从排水日期开始后的每个开票期,乙方都应向甲方支付相应的污水处理服务费。
- 6.1.2 自合同生效起,起始污水处理单价暂定为【 10 】元/吨、若泰兴经济开发区管理委员会后续对污水处理单价进行调整,则甲乙双方重新计算污水处理费用、并在后续费用结算中进行多退少补。污水处理费用差额= (调整后污水处理单价-10) ×合同生效期内甲方污水厂接收乙方排放的污水总量。此价格不含增值税。乙方应向甲方支付含增值税价格、增值税税率为6%、一旦相关权威机构对该税率进行调整,应保持不合税价格不变,含税价格同步做相应的调整。
- 6.13 污水处理服务费的计算公式
  - (a) 当开票期的污水排放量小于或等于500吨时:

污水处理服务费=500×当期污水处理单价

(b) 当开票期的污水排放量大于500吨时

污水处理服务费=当期污水排放量×当期污水处理单价

#### 6.2 污水处理单价调整

运营期内,由于电价。药剂费用、社会劳动力平均价格等因素的变化造成项目运营成本增加时,污水处理单价或作相应调整。价格调整应参照泰兴相关市场管理办法、《中华人民共和国价格法》等规定执行,调整后的单价以相应政府部门正式批复为准。

#### 6.3 服务补偿费

如果甲方及/或受托运营方发现乙方排放超标污水,甲方除享有本协议第 3.3 条约定相关权利外,乙方还应按如下计算方式向甲方支付服务补偿费:

(a) 若本协议有效期内的某个月中。乙方超标次数少于三次(不含三次), 则前两次超标的服务补偿费计算方法如下。

服务补偿费=A×B× (C1+C2+···+Cn) +D×E

A=超标期间污水处理量(从甲方及/或受托运营方发现超标的前一次排水检测(该检测 显示污水未超标)之日至受托运营方书面词意乙方恢复排水期间的水量)

B=当期污水处理单价

HILDRESON FRANKE STATE OF THE S

- C1、C2···Cn: 各污染因子的超标系数(保留2位小数)。单个污染因子的超标系数= 该因子的实测值+本协议第322条规定的该因子的纳管标准限值。
- D=超标后的复测(如有)次数
- E=复测中的采样及分析费用,具体收费标准参照江苏省物价局。江苏省财政厅和江苏 省环境保护厅共同颁布的《江苏省环境监测专业服务收费标准》
- (b) 若本协议有效期内的某个月中、乙方超标次数大于三(3)次(含3次)、則自第三次 超标起按月计算当月服务补偿费、不再计算单次服务补偿费。当月服务补偿费计算方 法如下:

服务补偿费=Q×B× (C1+C2+--+Cn) +D×E

- Q=当月污水处理量
- B=当期污水处理单价
- C1、C2、Cn: 当月各污染因子的超标系数(保留2位小数)。单个污染因子的超标系数=该因子的实测值+本协议第3.22条规定的该因子的纳管标准限值。取几次检测结果中该指标的最大检测值。
- D: 超标后的复测(如有)次数
- E: 复侧中的采样及分析费用。具体收费标准参照江苏省物价局。江苏省财政厅和江苏省环境保护厅共同颁布的《江苏省环境监测专业服务收费标准》
- (c) 当期污水处理单价以上述第6.12条所示污水处理单价为准, 并根据该等约定相应调整
- (d) 计算服务补偿费的超标期间还应遵循如下规则:
  - i. 乙方不得向甲方进行排水、直至受托运营方书面通知后,方可恢复向设施继续排放污水;
- 二乙方任何一次被甲方及/或受托运营方发现排放超标污水并在收到受托运营方通知后仍 排放超标污水超过十天(含),或一年内排水超标超过五次(含),甲方有权向乙方 发出终止协议的通知,并非面通知园区环保料和泰兴市生态环境局。

#### 6.4 开票和付款

- 64.1 开票期为上个日历月的21日至相应日历月的20日。第一个开票期应从排水日期开始。至相应日历月的20日结束:如首次排水日期位于20日之后。则第一个开票期为首次排水日期至次月的20日结束:而最后一个开票期应从上个日历月的21日开始至本协议终止日期结束。
- 6.4.2 在每个开票期结束后的五个工作日内。甲方应向乙方提供一份月报表和分別与污水 处理服务费和服务补偿费等额的增值税专用发票。月报表中详细说明根据本协议策 6条的规定乙方在该开票期应付的污水处理服务费和服务补偿费。
- 6.4.3 乙方应在收到月报表和发票后的五个工作日内向甲方金额支付该开票期内的污水处理服务费和服务补偿费。乙方如对月报和发票金额有异议的、应随附支持性材料在

12/80/11

7月202200日 新洲化学《新代》有视公司污水处理服务排仪

前述付款期限内以书面向甲方提出,但该异议不构成乙方推迟付款的理由。甲方确 认月报与发票金额确有误差的,应在下一次收费时予以相应调整。

- 6.4.4 本协议下双方支付的所有付款应不含折扣、扣除或任何抵销、并应在第6.4.3条规定的付款日前全部通过银行转账的方式汇到双方书面指定的中华人民共和国境内的账户。
- 6.4.5 乙方若付款逾期,则甲方有权从逾期之日起每日加收应付而未付的相关费用金额的 万分之五作为逾期速约金、直至完全付清;若逾期超过三十日的,则甲方有权提前 24小时书面通知乙方并暂停接收乙方的污水。由此产生的全部后果及责任均由乙方 签担
- 6.4.6 甲方双方的收款账户和开票信息如下:
- 1) 甲方

单位名称:中交苏伊士泰兴环境投资有限公司

税号: 91321283MA204WUF3Q

开户银行:中国邮政储蓄银行股份有限公司泰兴市支行

银行账户: 9320 0001 0072 6566 73 单位地址: 泰兴市滨江镇福泰路 1 号

电话号码: 0523-82736767

2) 乙方

单位名称: 新浦化学 (泰兴) 有限公司

税号: 913212836087847472 开户银行: 建行泰兴沿江分理处

银行账户: 32001766340050379078

单位地址: 泰兴市经济开发区疏港路1号

电话号码: 0523-82565666

#### 第七条 法律变更

- 7.1 如果生效日期后的法律变更。导致甲方在按本协议履行其职责时成本发生变化、甲 方应尽快:
- 1) 书面通知乙方相关的"法律变更"及其造成的所有财务后果;

用出用2003三组用化等 ( 基代) 有限公司污水处理服务协议

- 确定最经济有效的方法,以符合该"法律变更"以及有关安全和可靠性方面的要求。并决定是否需要或想要对甲方的设施进行任何改建。
- 3) 书面通知乙方调整后的收费方案以及生效日期,以满足因法律变更产生的新要求。

#### 第八条 不可抗力

#### 8.1 不可抗力事件

- 8.1.1 不可抗力是指不能预见。不能避免并不能克服的客观情况。包括但不限于:
- (a) 天灾;
- (b) 暴雨、水灾或其他罕见严重的气候条件。地震、雷电、旋风、滑坡、自然灾害、时疫、爆炸或火灾、瘟疫;
- (c) 放射性污染或电离辐射;
- (d) 无法从外电阀获得供电;
- (e) 罢工、封锁、抗议、停工、怠工或其他劳工行为(涉及任何一方员工的罢工、封 镇、停工或怠工除外);
- (f) 战争(宣战或未宣战)、入侵、禁运、民间强动、恐怖行为、军事行动或破坏活动;
- (g) 由任何法定机关对设施。乙方工厂或任何一方的任何资产或权力进行征用或强行接收;
- (h) 非法、未经授权或错误撤销、或拒绝更新或授予"双方履行其在本协议下相应义务 时所需的任何法定审批,但是上述的延迟、修改。否决、拒绝或撤销不是由于被影 响方的(或任何的承包商或其它分包斋的)缺乏能力或未能够遵守为获得上述法定 审批的授予。保持或更新所需的条件而导致的;
- (i) 在特殊情况下。意外事故造成的对设施的正确和有效运行所必须的管道或管架的事故或断裂;
- 有关法定机关对图区的总体管理和运行做出新的规定。要求区内投资用户执行的规定。影响到其中一方履行本协议;
- (k) 根据法定机关的要求进行人员疏散;
- (1) 任何双方同意的其他事件。
- 8.1.2 声称受到不可抗力影响的一方应在知道不可抗力事件发生之后立即书面通知另一方。详细描述有关不可抗力事件的发生和对该方在履行本协议项下的义务可能产生的影响。预计不可抗力事件结束的时间。并应向另一方提供相关证明。

H12022001:2001:20011(2) (第34) 军聚公司[6]水处理服务部[2

- 8.1.3 如不可抗力事件造成一方不能全部或部分履行本协议、根据不可抗力事件的影响可全部或部分免除该方在本协议项下的相应义务。但在不可抗力事件结束后、中止履行义务的一方应当尽快恢复履行这些义务。如不可抗力事件造成一方在本协议项下的有关义务不得不延迟履行、则在不可抗力事件结束后、该方应恢复履行。
- 8.1.4 除各方另行协商或约定外。各方应各自承担由于不可抗力事件的发生对其造成的损失。

#### 8.2 不可抗力造成的终止

- (a) 如果任何不可抗力事件阻止乙方或甲方不能履行其在本协议项下的义务的时间连续或 累计超过九十天,双方应协商决定是否继续履行本协议或者一致同意终止本协议。
- (b) 如果自不可抗力发生后一百八十天内(在甲方设施全部或大部分损毁的情况下,为三十天内),双方不能重新商定合同条件,任何一方可以给予另一方书面通知,终止本协议。

#### 第九条 争议的解决

- 9.1 乙、甲双方同意、若就本协议发生任何争议、应首先通过友好协商解决。
- 9.2 若双方未能在30个工作日内通过友好协商解决争议、则任何一方均有权将争议提交中国国际经济贸易仲裁委员会、按照申请仲裁时该会现行有效的仲裁规则在北京进行仲裁。仲裁裁决是终局的、对双方均有约束力。
- 9.3 在仲裁期间,除正在仲裁的事项之外,双方应继续履行其本协议项下的所有义务。

#### 第十条 通知

#### 10.1 通知

- 10.1.1 本协议下要求以书面形式发出的任何通知或联络都应以快递、人工递交、挂号信件、传真。电子邮件的形式。该通知或联络应按下列地址或双方可能按本协议第10.1.3条书面通知的此类其他地址送达相应的双方。
- 10.1.2 除非在本协议中有明确说明,任何通知在下列情况下应被银作已经递交:
- (a) 如果通过快递或人工递交至相关方的地址;
- (b) 如果通过传真通知,当传真发出后发件人的发送报告显示全部传真都已被收件人接收并且发送的内容已经以可读的形式被接收;
- (c) 如果通过挂号信件递送通知,在邮寄时,如果通知以邮政方式递送,双方应仅使用 挂号信方式。



I/E0020015 新油化等 ( 业大) 有联系的污水处理服务协议

如果给甲方,则按以下地址:

中交苏伊士泰兴环境投资有限公司

地址:中华人民共和国江苏省泰兴市文昌东路罗兰领墅5栋

传真

邮箱: zizhu0514@163.com 如果给乙方。则按以下地址: 新浦化学 (泰兴) 有限公司

地址:泰兴市经济开发区疏港路1号

传真:

邮箱: yuan-gen.wang@spchemicals.com

10.1.3 双方可以书面形式通知另一方其他的联络名称、地址、电话号码或传真号码、以供 通知或联络。

10.1.4 如果一方更改其在10.1.2条中的任何信息。应在发生该等变更之日起15个工作日内立即通知另一方。

#### 第十一条 其他

- 11.1 本协议只有经双方书面约定才能修改、更改成补充。
- 11.2 双方(或其关联方、其自身或其关联方的雇员、代理人、专业顾问)对其获得的有关本协议和项目的所有资料和文件(无论是财务方面、技术方面还是其他方面的)应予以保密、但甲方有权向受托运营方及其关联方按器。本协议项下的保密义务在本协议有效期内或本协议终止后五年内继续有效。

#### 第十二条 合同有效期与终止

- 12.1 双方問意本协议的运营期为自首次排水日期起至泰兴经济开发区污水处理及生态环境提升 PPP 项目合同有效期的最后一日。
- 12.2 本协议应在下送情况下终止:
  - a) 政府出台新法律法规确定乙方污水为禁止接入的污水;
  - b) 发生以下情况:

图202200亿亚洲化学(原义)和现金部以来处理服务地位

- 本协议因不可抗力事件按第8.2条终止;
- ii. 本协议根据第 12.5条被终止;
- iii. 法律法规规定的可终止合同的其他情形。
- 12.2 下述事件如果不是由不可抗力引起的,则为乙方违约,甲方有权立即向乙方发出终止通知:
  - a) 乙方在本协议中做的声明或保证被证明在提供时严重有误、使甲方履行本协议项下的义务的能力受到严重不利影响;
  - b) 乙方停业或注销工商量记、或依适用法律清算或资不抵债;
  - c) 乙方根据本协议应支付甲方的任何款项在到期应付之日后三十日仍未支付的;
  - d) 乙方任何一次被甲方发现排放超标污水并在收到乙方通知后仍排放超标污水超过十 天(含)。或一年內超标排水超过五次(含);
  - e) 乙方违反本协议项下的义务,且在甲方发出说明此违约和要求乙方进行纠正的书面通知后六十天内,乙方未能纠正的。
- 12.3 下述事件如果不是由于乙方违约或不可抗力引起的,则为甲方违约,乙方有权向甲方发出 终止意向通知
  - a) 甲方停业或注销工向登记,或依适用法律清算或资不抵债;
  - b) 甲方严重违反本协议。并且在乙方发出说明该违约和要求甲方进行纠正的书面通知 后六十天内。甲方未能纠正的。
- 12.4 终止意向通知均应说明导致该通知的乙方违约事件或甲方违约事件。
- 12.5 甲方和乙方应在终止意向通知发出后三十天内、或双方书面同意的更长期限内协商以避免 终止本协议。协商期满、双方未能达或一致、发出终止意向通知的一方可向另一方发出终 止通知、终止通知送达对方时本协议立师终止。
- 12.6 本协议经双方法定代表人或授权代表签署并加盖公章后生效。有效期至泰兴经济开发区污水处理及生态环境提升 PPP 项目合同有效期的最后一日。
- 12.7 本协议正本一式陆份,甲方执肆份、乙方执贰份、具有同等法律效力。

(以下无正文)



[[20/2001] 新新算學 [新報] 實際英語原来於國際集構成

#### (本页仅为签章页)

鉴于此,双方特此于文首所述日期和年份签订本协议。

甲方:中交苏伊士泰兴环境积黄有限公司 签字人: 职位:总经理

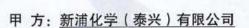
乙方: 新浦化学 (泰兴) 有限公司

签字人: (TAIX I Mg) Co (特共) 希腊 公 (日) 专用章 (1)

# 附件 4——应急预案备案意见

## 企业事业单位突发环境事件应急预案备案表

| 单位名称    | 新浦化学 (泰兴) 有限公司                                    | 机构代码            | 913212836087847472          |
|---------|---------------------------------------------------|-----------------|-----------------------------|
| 法定代表人   | 林嘉华                                               | 联系电话            | 0523-82565666               |
| 联系人     | 吕计元                                               | 联系电话            | 0523-82565666-56110         |
| 传真      | 0523-87672102 转 0                                 | 电子邮箱            | ji-yuan. lv@spchemicals.com |
| 地址      | 中心经度 119° 54 ′ 56°                                |                 | 32* 07 * 29*                |
| 预案名称    | 《突发环境事件应急预案》                                      |                 |                             |
| 风险级别    | 一般 L. 数大 M                                        |                 | 重大日                         |
| 各, 备案文件 | 202年年 11 月 37 口签署<br>齐全,现报送各案。<br>诺,本单位在办理各案中所提供的 |                 |                             |
|         | 明中大。                                              | CHEMICAL STATES | TALILIE CO                  |


| 突发环境<br>事件应急<br>预案备案<br>文件目录 | 1.环境应急预案各案<br>2.环境应急预案(签署<br>环境应急预案(签署<br>编制说明(编制过程<br>况说明、评审情况说<br>3.环境风险评估报告<br>4.环境应急资源调查<br>5.环境应急预案评审 | 制说明;<br>发布文件、环境应急<br>概述、重点内容说明<br>识明);<br>;<br>报告; | 月、征求意见及采纳情 |
|------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------|
| 备案意见                         | 该单位的突发环<br>月 28 日收讫,文件                                                                                     |                                                    | 77(公章)     |
| 备案编号                         |                                                                                                            | 321283-2024-217                                    | -н         |
| 报送单位                         | 95                                                                                                         | 浦化学(泰兴)有限                                          | 公司         |
| 受理部门<br>负责人                  | 力を                                                                                                         | 经办人                                                | 1/89/5     |

注:备案编号由企业所在地县级行政区划代码、年份、流水号、企业环境风险级别(一般L、较大M、重大H)及跨区域(T)表征字母组成。例如,河北省永年县\*\*重大环境风险非跨区域企业环境应急预案2015年备案,是永年县环境保护局当年受理的第26个备案,则编号为:130429-2015-026-H;如果是跨区域的企业,则编号为:130429-2015-026-HT。

# 附件5——危废处置协议

VVmp.trosn pres 在1日月月前衛海之間應用布場採用保養局

# 废料出售合同



乙 方: 南通海之阳环保工程技术有限公司



YY20340260 2026年1月-12月南通海之阳堤州包装桶出售合同

#### 甲方: 新浦化学(泰兴)有限公司

#### 乙方: 南通海之阳环保工程技术有限公司

甲、乙双方通过友好协商,于 2024 年 12 月 17 日就甲方出售给乙方 <u>废</u> 旧包装桶(HW49(900-041-49))等事宜进行充分协商后一致同意签订本合同,具体条款如下:

### 一、废料名称、质量要求、计量单位、数量、单价和金额

| 序号 | 废料名称                         | 质量要求 | 计量单位 | 数量   | 含模单价 | 不含税单价 | 不含稅金額 | 税率 | 税额 |
|----|------------------------------|------|------|------|------|-------|-------|----|----|
| 1  | 废包装桶<br>(鉄 ≥ 200L)           | ,    | Я    | 1400 |      | 6     |       |    |    |
| 2  | 変包装桶<br>(塑料≥<br>2001.)       | A'A  | я    | 1700 |      |       | 70 Z  |    |    |
| 3  | 吨机                           | V,6  | 只    | 500  |      |       |       |    |    |
| 4  | 废旧包装<br>桶<br>(<2001.,<br>般料) | 7    | 盹    | 80   | 电    | ru.   |       |    |    |
| 5  | 废油漆桶                         | 1    | 100  | 80   |      |       |       |    |    |
| 6  | 度包装桶<br>(                    |      | 具    | 1000 |      |       |       |    |    |
| 7  | 废包装桶<br>( 製料≥<br>200L )      | 1    | 貝    | 1000 |      |       |       |    |    |

| 合  | it:                         |   |    |     | W | 元 | 元  |
|----|-----------------------------|---|----|-----|---|---|----|
| 10 | 废油漆桶                        | 1 | nt | 20  |   |   |    |
| 9  | 度旧包装<br>種<br>(<200L,<br>塑料) | 7 | 吨  | 10  |   |   | 68 |
| 8  | 叫桶                          | 1 | Я  | 400 |   |   |    |

- 1、上表列明的单价包括(/):
  - a) 包装费 b) 保险费 c) 运输费 d)其他费用
- 2、其他关于单价的说明:①合同有效期内让售单价不变(乙方付款,甲方开票), 后续加遇国家税率政策变化,同步按新税率执行,不含税单价不变。②以上 数量中,序号1-5项下为新浦化学(南北厂等)预估处置数量,序号6-10 项下为新浦化学(烯烃厂等线下过磅的厂区)预估处置数量,具体处置数量 以甲方实际转移的数量为准。③乙方处置方式为清洗,甲乙双方如因检修、 换证等原因停产,不能正常操作时,应提前30天书面通知对方,以便双方 重新安排计划。
- 3、如在计划时间内遇生产检修或不可抗力的原因引起生产停车,则计划取消。

#### 二、包装要求

- 1、包装要求按照(a)执行:
- a) 散装 b) 瓶装 c) 桶装 d) 其他\_/\_
- 2、回收要求按照(b)执行:
- a)回收 b) 不回收
- 3、 包装费用要求: \_ 无\_\_

- 3 -

YY20240280 2025年1月-12月前通海之阳城田包装桶出售合同

- 4、 回收包装物要求: \_ 无\_
- 5、 其他要求: 无\_

#### 三、交货与交货方式

- 1、 交货期限: 乙方在接到甲方书面通知后 2 天内必须将货物全部提完
- 2、交货地点按照 (a) 执行:
  - a) 在甲方工厂交货, 乙方到甲方工厂内指定地点提货。
  - b) 甲方委托承运人代运至乙方指定地点\_\_\_\_\_
- 3、除非本合同中另有说明,否则与上述运输方式相关的运费在交货前由甲方承担,交货后由乙方承担。
- 4、 货物的所有权和风险应于交货完成时转移到乙方。

#### 四、验收方式

- 1、 废料的数量以甲方计量结果为准。
- 2、 其他: 结算数量以甲方过磅、清点数量为准。

#### 五、付款方式

- 1、 付款条件按照(a)执行:
- a) 款到发货\_\_\_\_\_\_b) 货到付款\_\_\_\_\_
- 2、 结算方式按照 (a) 执行:
- a) 现汇 b) 银行承兑汇票 c) 其他\_\_\_\_

#### 六、不可抗力

- 1、不可抗力是指本合同生效后,发生不能预见并且对其发生和后果不能防止或 避免的事件,如地震、台风、水灾、火灾、战争等,致使直接影响本合同的 履行或不能按约定的条件履行。
- 2、 发生不可抗力的一方应立即通知对方,并在10日内提供不可抗力的详情及 将有关证明文件送交对方。

YY20240260 2025年1月-12月南通海之阳度旧位装桶由售合同

- 3、发生不可抗力事件时,甲乙双方应协商以寻找一个合理的解决方法,并尽一切努力减轻不可抗力产生的后果。
- 4、如不可抗力事件持续30日时,甲乙双方应友好协商解决本合同是否继续履行或终止的问题。

#### 七、违约责任

- 合同的任何一方因不可抗力因素致使不能履行或部分不能履行本合同有关条款而产生纠纷,按《民法典》有关条款执行。
- 2、甲方无正当理由逾期交货或不能交货的,每日向乙方支付延迟交货部分货款的1‰的违约金。
- 3、乙方如不按照本合同约定准时支付款项时,应从最迟付款日的次日起,每日向甲方偿付逾期付款部分总值的1%的违约金。逾期30日以上,甲方有权停止向乙方供货,直至上述欠款及违约金付清为止。
- 4、乙方违反合同实质性义务,或单方面中止、终止履行合同的,应向甲方支付合同总价\_10%\_\_\_的违约金,如违约金不足以赔偿甲方的损失,乙方应立即补偿该不足部分,且甲方有权要求乙方继续履行合同或解除合同。
- 5、其他: 乙方保证在合同有效期內具有处理和加工合同标的物的能力与资源, 并承诺严格按照国家法律规定处置固废及处置过程中产生的废渣、废水、废气, 不非法转移、倒卖甲方固废。乙方不得擅自倾倒、堆放丢弃货遗撒(飞撒、溅落) 固 废,不得于厂内露天摆放、燃烧,否则由此产生的一切后果由乙方全责承担。

#### 八、保密条款

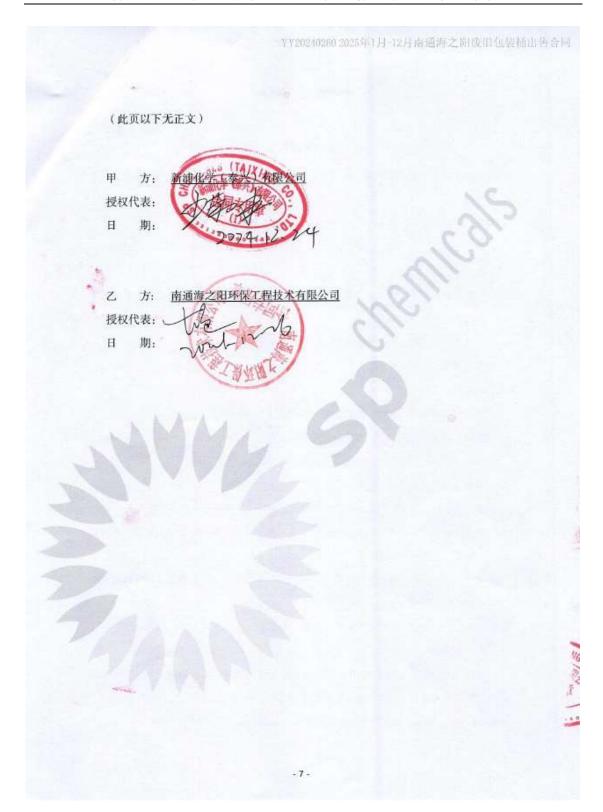
- 合同一方提供给对方的技术资料、信息、计算机软件、专有技术、设计方案等知识产权及价格条款等商业秘密和技术秘密,对方应采取保密措施,予以严密保守,如违反本条规定致使一方遭受损失,违约方应负法律责任,并赔偿由此引起的直接和可能的经济损失。
- 2、 双方的保密义务期限为自本合同生效之日起至本合同终止后就年。

#### 九、履约保证

YY20240260 2025年1月-12月南連海之阳城旧包装槽出售合同

- 乙方保证具有处理和加工合同标的的能力和资质,如因乙方不具备国家规定 相关资质所引起的一切后果由乙方承担。
- 2、 乙方需支付<u>貳万(20000)</u>元作为履约保证金,乙方如不按本合同约定 履行,甲方将不予退还此保证金。
- 十、合同转让: 未经双方事先书面同意, 不得将本合同转让给任何第三方。

#### 十一、合同终止


- 1、 如乙方未能及时足额付清货款 2 次, 甲方有权提前终止本合约。
- 任何一方在本合同已执行部分项下应履行的义务不因本合同的提前终止而终止。

#### 十二、合同修改

- 1、甲乙双方对本合同内容进行修改和补充时,在协商一致后,签署补充协议, 合同双方授权代表签字盖章后即为生效。
- 合同任何一方对本合同文本内容进行的修改,未经对方授权代表签字盖章确 认的无效。

#### 十三、合同生效及其它

- 1、本合同及合同附件经甲乙双方授权代表签字盖章后即为生效。
- 2、本合同有效期至 2025 年 12 月 31 日。
- 3、本合同一式贰份,甲乙双方各执壹份。
- 4、甲乙双方在履行本合同的过程中,如发生纠纷或争议,应通过友好协商解决, 协商不成时,向甲方住所地人民法院起诉。
- 5、其他事项:①、乙方在甲方指定区域内清运废包装桶、废油漆桶时,必须遵守甲方的规章制度,不得挟带、掺杂合同以外的货物。②乙方须按照甲方处置需求,及时安排车辆清运甲方现场废旧包装桶库存。如乙方未能及时按要求处置2次,甲方有权扣除乙方在甲方账面的履约保证金,并提前终止本合同。



### 附件6——立项备案



# 江苏省投资项目备案证

备案证号: 泰发改备 (2020) 4号

项目名称: 年产50万吨乙烯法聚合技术制备聚氯 项目法人单位: 新浦化学(泰兴)有限公司

乙烯项目

**项目代码:** 2020-321283-26-03-350170 **项目法人单位性质:** 外商独资企业

建设地点: 江苏省:泰州市 泰兴市 项目建设地点 项目总投资: 134554万元

**设地点:** 江苏省:泰州市 泰兴市 项目建设地点 拟选址于泰兴经济开发区闸南路东侧 、苏伊士公司西侧、运河南路南侧、

疏港路北侧。

投资方式: 增资项目 拟进口设备数量及金额:

项目建设期: (2021-2023)

建设规模及内容: 占地面积约123.68亩(其中新增用地107.45亩),新建生产车间、化学品仓库、综合仓库等设施工程

,并配套建设给排水、供配电、环保、消防等设施,建筑面积约34386平方米;购置汽提塔、聚合釜、冷凝器、离心机、水泵等设备;采用乙烯法聚合技术制备聚氯乙烯;项目建成后,形成年产聚氯乙烯

50万吨的生产能力。

项目法人单位承诺:对备案项目信息的真实性、合法性和完整性负责;项目符合国家产业政策,符合外商投资准入负面清单

规定:依法依规办理各项报建审批手续后开工建设:如有违规情况,愿承担相关的法律责任。

**安全生产要求:** 要强化安全生产管理,按照相关规章制度 压实项目建设单位及相关责任主体安全生产及监管责任,严防安 全生产事故发生;要加强施工环境分析,认真排查并及时消除项 目本身与周边设施相交相邻等可能存在的安全隐患,保障施工安 全。

泰州市发改委 2020-08-10

材料的真实性请在http://58.213.139.243:8074/网站查询

#### 附件 7— -监测报告



NJADT/JS-300/0-2021

#### 声明

- 1. 本报告未盖"南京爱迪信环境技术有限公司检验检测专用章"及骑缝章无效;
- 2. 本报告无编制人、审核人、签发人签字或等效的标识无效;
- 3. 本报告发生任何涂改后均无效;
- 4. 本报告检测结果仅对被测地点、对象及当时情况有效,送样检测仅对送样检测数据负责;
- 5. 委托方应对提供的检测相关信息的完整性、真实性、准确性负责。本公司实施的所有检测行为以及提供的相关报告以委托方提供的信息为前提,若委托方提供信息存在错误、偏离或与实际情况不符,本公司不承担由此引起的责任;
- 6. 未经本机构批准,不得复制(全文复制除外)报告;
- 7. 委托方对检测报告有任何异议的,应于收到报告之日起十五日内提出,逾期 视为认可检测结果;
- 8. 当检测结果低于所用方法检出限时,报出结果以 ND 表示并附方法检出限;
- 9. 若项目左上角标注"\*",表示由分包支持服务方进行检测;
- 10. 本报告如未带资质认定(CMA)标志,报告结果仅作为科研、教学、内部质量控制等用途,不具有对社会的证明作用;
- 11. 报告的附录资料仅作参考,不在 CMA 报告正文范围内。

公司名称:南京爱迪信环境技术有限公司

地址: 江苏省-南京市-江宁区-秣陵街道吉印大道 3008 号 1 幢三层、四层

总机: 025-52723263 传真: 025-52723263

E-mail: adt.nj@adtchina.net

地址: 江苏省-南京市-江宁区-秣陵街道吉印大道 3008 号 1 幢三层、四层 邮编: 211102 电话 (传真): 025-52723263 投诉电话: 18115131122

NJADT/JS-300/0-2021

#### 南京爱迪信环境技术有限公司 检测报告

表(一)项目概况说明

| 项目编号<br>Item Number                     | XM25010066                                                                                  |
|-----------------------------------------|---------------------------------------------------------------------------------------------|
| 受检单位<br>Inspected Unit                  | 新浦化学 (泰兴) 有限公司                                                                              |
| 地址<br>Address                           | 江苏省泰兴经济开发区疏港西路 20 号                                                                         |
| 项目名称<br>Item Name                       | 年产 50 万吨乙烯法聚合技术制备聚氯乙烯项目                                                                     |
| 样品来源方式<br>Source Mode of Sample         | 委托采样                                                                                        |
| 联系人<br>Contact Person                   | 朱静                                                                                          |
| 采样人员<br>Sampling Person                 | 王康、张民杰、黄文亮、王成壮、周旨林、戴志严、张德正、徐满川、<br>张传帅、江梦迪                                                  |
| 采样日期<br>Sampling Date                   | 2025.05.26~2025.05.27 分析日期<br>Analyst Date 2025.05.26~2025.05.30                            |
| 检测内容<br>Testing Content                 | 废水: pH 值、化学需氧量、悬浮物、氨氮、总磷、氯离子、石油类:<br>有组织废气: 氯乙烯、非甲烷总烃、颗粒物;<br>无组织废气: 非甲烷总烃、氯乙烯;<br>噪声: 厂界噪声 |
| 检测结果<br>Testing Result                  | 详见表 (二)~(五)                                                                                 |
| 检测方法及仪器 Detection Method and Instrument | 详见表 (六)                                                                                     |

单位盖章:

地址: 江苏省-南京市-江宁区-秣陵街道吉印大道 3008 号 1 幢三层、四层邮编: 211102 电话(传真): 025-52723263 投诉电话: 18115131122

第 1 页 共 35 页

NJADT/JS-300/0-2021

# 南京爱迪信环境技术有限公司 检测报告

表(二)废水检测数据结果表

| 采                                     | 样日期          |                |                       |                       | 2025.05.26            |                       |              |  |  |
|---------------------------------------|--------------|----------------|-----------------------|-----------------------|-----------------------|-----------------------|--------------|--|--|
| 检                                     | 测点位          | and E          | VD.                   | 1#有                   | 机废水处理站                | 排口                    |              |  |  |
| 样                                     | 样品编号<br>样品状态 |                |                       | FS25010066<br>-1-1-2  | FS25010066<br>-1-1-3  | FS25010066<br>-1-1-4  | 看            |  |  |
| 样                                     |              |                |                       | 灰色、微浑、<br>无异味、无<br>浮油 | 灰色、微浑、<br>无异味、无<br>浮油 | 灰色、微浑、<br>无异味、无<br>浮油 | 参考标准         |  |  |
| 检测项目                                  | 单位           | 检出限            |                       | 检测                    | 结果                    | TOA SELL              |              |  |  |
| pH 值                                  | 无量纲          |                | 7.4(28.5°C)           | 7.5(29.1°C)           | 7.7(28.3°C)           | 7.9(26.7°C)           | 6-9          |  |  |
| 化学需氧量                                 | mg/L         | 74             | 110                   | 100                   | 108                   | 104                   | 500          |  |  |
| 悬浮物                                   | mg/L         |                | 41                    | 46                    | 39                    | 43                    | 100          |  |  |
| 氨氮 mg/L                               | mg/L         | 0.025          | 16.3                  | 16.0                  | 15.4                  | 15.8                  | 30           |  |  |
| 总磷                                    | mg/L         | 0.01           | 0.71                  | 0.69                  | 0.69                  | 0.76                  | <b>∆</b> □ 3 |  |  |
| · · · · · · · · · · · · · · · · · · · | 样日期          |                | 77                    | HIS AV                | 2025.05,27            |                       | 7            |  |  |
|                                       | 测点位          | ielle N        | 1#有机废水处理站排口           |                       |                       |                       |              |  |  |
| - N                                   | 品编号          | 70ء            | FS25010066<br>-1-2-1  | FS25010066<br>-1-2-2  | FS25010066<br>-1-2-3  | FS25010066<br>-1-2-4  | 420          |  |  |
| #EAO #                                | 品状态          |                | 灰色、微浑、<br>无异味、无<br>浮油 | 灰色、微浑、<br>无异味、无<br>浮油 | 灰色、微浑、<br>无异味、无<br>浮油 | 灰色、微浑、<br>无异味、无<br>浮油 | 参考标准         |  |  |
| 检测项目                                  | 单位           | 检出限            | TOA HELL              | 检测                    | 结果                    |                       | آ₄ ≝         |  |  |
| pH值                                   | 无量纲          | - 1            | 7.8(28.1°C)           | 7.7(28.8°C)           | 7.6(28.9°C)           | 7.6(28.9°C)           | 6-9          |  |  |
| 化学需氧量                                 | mg/L         | 4              | 108                   | 105                   | 106                   | 114                   | 500          |  |  |
| 悬浮物                                   | mg/L         | 10) <u>mag</u> | 37                    | 47                    | 46                    | 41                    | 100          |  |  |
| 氨氮 -                                  | mg/L         | 0.025          | 13.4                  | 13.1                  | 12.5                  | 12.9                  | 30           |  |  |
|                                       |              |                |                       |                       |                       | 100000                | NV .         |  |  |

地址: 江苏省-南京市-江宁区-秣陵街道吉印大道 3008 号 1 幢三层、四层邮编: 211102 电话(传真): 025-52723263 投诉电话: 18115131122

第 2 页 共 35 页

NJADT/JS-300/0-2021

# 南京爱迪信环境技术有限公司 检测报告

续表(二)废水检测数据结果表

| Kalinian Kalinian | 尺样日期        | LA       | T                                                                                                              |                       | 2025.05.26                       |                       |        |
|-------------------|-------------|----------|----------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------|-----------------------|--------|
| 核                 | <b>金测点位</b> | (ff./=_, | الله المالية الله المالية الله المالية الله المالية الله المالية المالية المالية المالية المالية المالية المال | AD 酸                  | 碱中和预处理                           | 出口                    | Pinis  |
| <b>美国</b> 国       | 样品编号        |          |                                                                                                                | FS25010066<br>-2-1-2  | FS25010066<br>-2-1-3             | FS25010066<br>-2-1-4  | *      |
| DE AD N           | 羊品状态        | To.      | 微黄、微浑、<br>无异味、无<br>浮油                                                                                          | 微黄、微浑、<br>无异味、无<br>浮油 | 微黄、微浑、<br>无异味、无<br>浮油            | 微黄、微浑、<br>无异味、无<br>浮油 | 参考标准   |
| 检测项目              | 单位          | 检出限      | TOA illin                                                                                                      | 检测                    | 1结果                              | 6                     |        |
| pH 值              | 无量纲         | - 7      | 8.0(27.0°C)                                                                                                    | 8.9(29.3°C)           | 8.6(28.9°C)                      | 8.5(28.1°C)           | 6-9    |
| 化学需氧量             | mg/L        | 4        | 206                                                                                                            | 198                   | 212                              | 205                   | 250    |
| 悬浮物               | mg/L        | -        | 61                                                                                                             | 61 58                 | 64                               | 56                    | 70     |
| 氯离子               | mg/L        | 0.007    | ND                                                                                                             | ND                    | ND                               | ND                    | 0.5    |
| A in a            | DT T        |          | 10/3                                                                                                           |                       | ADT                              |                       | agult. |
| <b>第二</b>         | 样日期         | (EAD)    |                                                                                                                | OI M                  | 2025.05.27                       | SIBIE AU              |        |
| 松                 | t测点位        |          | 最出版                                                                                                            | 酸矿                    | 减中和预处理出                          | ЦП                    | 1/19/5 |
| 村                 | 品编号         | NO,      | FS25010066<br>-2-2-1                                                                                           | FS25010066<br>-2-2-2  | FS25010066<br>-2-2-3             | FS25010066<br>-2-2-4  |        |
| ¥                 | 品状态         | of I     | 微黄、微浑、<br>无异味、无<br>浮油                                                                                          | 微黄、微浑、<br>无异味、无<br>浮油 | 微黄、微浑、<br>无异味、无<br>浮油            | 微黄、微浑、<br>无异味、无<br>浮油 | 参考标准   |
| 检测项目              | 单位          | 检出限      | PAC                                                                                                            | 检测                    | 结果                               |                       |        |
| pH值               | 无量纲         | -        | 8.2(26.9°C)                                                                                                    | 8.3(27.0°C)           | 8.2(27.4°C)                      | 8.2(27.6°C)           | 6-9    |
| 化学需氧量             | mg/L        | 4        | 211                                                                                                            | 214                   | 217                              | 208                   | 250    |
| 悬浮物               | mg/L        | - 7      | 68                                                                                                             | 61                    | 63                               | 59                    | 70     |
| 氯离子               | mg/L        | 0.007    | ND                                                                                                             | ND                    | ND                               | ND                    | 0.5    |
| 备注                | 参考标准        | . 由禾红寸   | 万提供,参考《》                                                                                                       | · とか! 取得フル            | S = 1 - 11 - 3 = 3 to 16 or 4 ll | PARTY CON             |        |

地址: 江苏省-南京市-江宁区-秣陵街道吉印大道 3008 号 1 幢三层、四层邮编: 211102 电话(传真): 025-52723263 投诉电话: 18115131122

第 3 页 共 35 页

NJADT/JS-300/0-202

### 南京爱迪信环境技术有限公司检测报告

绿表(二)废水检测数据结果表

| 采                | 样日期      |                                       |                       |                       | 2025.05.26            | T.                    |       |  |  |  |
|------------------|----------|---------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-------|--|--|--|
| 检                | 测点位      |                                       | TO.                   |                       | 全厂总排口                 |                       |       |  |  |  |
| 样                | 品编号      | \$\(\mu\)\c                           | FS25010066<br>-3-1-1  | FS25010066<br>-3-1-2  | FS25010066<br>-3-1-3  | FS25010066<br>-3-1-4  | 4     |  |  |  |
| 样品状态             |          |                                       | 微黄、微浑、<br>无异味、无<br>浮油 | 微黄、微浑、<br>无异味、无<br>浮油 | 微黄、微浑、<br>无异味、无<br>浮油 | 微黄、微浑、<br>无异味、无<br>浮油 | 参考标准  |  |  |  |
| 检测项目             | 单位       | 检出限                                   |                       | 检测结果                  |                       |                       |       |  |  |  |
| pH值              | 无量纲      | <b>%</b> -                            | 7.8(30.5°C)           | 8.4(32.0°C)           | 8.3(31.3°C)           | 8.2(29.3°C)           | 6-9   |  |  |  |
| 化学需氧量            | mg/L     | 4                                     | 249                   | 243                   | 248                   | 239                   | 250   |  |  |  |
| 悬浮物              | mg/L     | ) <u> </u>                            | 67                    | 61                    | 68                    | 63                    | 100   |  |  |  |
| 氨氮               | mg/L     | 0.025                                 | 3.67                  | 3.59                  | 3.75                  | 3.71                  | 30    |  |  |  |
| 总磷               | mg/L     | 0.01                                  | 0.40                  | 0.52                  | 0.54                  | 0.49                  | 3     |  |  |  |
| 氯离子 mg/L 0.007   |          |                                       | ND                    | ND                    | ND                    | ND                    | 0.5   |  |  |  |
| )\               |          | \$181/2                               |                       | I QA                  |                       | E (m)e                |       |  |  |  |
| 采                | 样日期      |                                       | 1 100                 | MY                    | 2025.05.27            |                       | _ 1   |  |  |  |
| 检                | 测点位      | ABBB                                  | 全厂总排口                 |                       |                       |                       |       |  |  |  |
| 村<br>Manual 村    | 品编号      |                                       | FS25010066<br>-3-2-1  | FS25010066<br>-3-2-2  | FS25010066<br>-3-2-3  | FS25010066<br>-3-2-4  | - F/6 |  |  |  |
| 样<br>Manager All | 品状态      | AU.                                   | 微黄、微浑、<br>无异味、无<br>浮油 | 微黄、微浑、<br>无异味、无<br>浮油 | 微黄、微浑、<br>无异味、无<br>浮油 | 微黄、微浑、<br>无异味、无<br>浮油 | 参考标准  |  |  |  |
| 检测项目             | 单位       | 检出限                                   |                       | 检测                    | 结果                    | I DA                  |       |  |  |  |
| pH 值             | 无量纲      | -                                     | 7.9(29.3°C)           | 7.9(30.1°C)           | 8.0(29.8°C)           | 8.0(29.8°C)           | 6-9   |  |  |  |
| 化学需氧量            | mg/L     | 4                                     | 250                   | 248                   | 242                   | 245                   | 250   |  |  |  |
| 悬浮物              | mg/L     | -                                     | 61                    | 57                    | 64                    | 67                    | 100   |  |  |  |
| 氨氮               | mg/L     | 0.025                                 | 3.40                  | 3.21                  | 3,42                  | 3.32                  | 30    |  |  |  |
| 总磷               | mg/L     | 0.01                                  | 0.60                  | 0.57                  | 0.49                  | 0.53                  | 3     |  |  |  |
| 氯离子              | mg/L     | 0.007                                 | ND                    | ND                    | ND                    | ND                    | 0.5   |  |  |  |
| 备注               | 51 1 1 W | *考标准: 由委托方提供,参考《烧碱、聚氯乙烯工业污染物排放标准》(GB) |                       |                       |                       |                       |       |  |  |  |

地址: 江苏省-南京市-江宁区-秣陵街道吉印大道 3008 号 1 幢三层、四层邮编: 211102 电话(传真): 025-52723263 投诉电话: 18115131122

第 4 页 共 35 页

NJADT/JS-300/0-2021

# 南京爱迪信环境技术有限公司 检测报告

续表(二)废水检测数据结果表

| 56       | <b>K</b> 样日期   |          | OT TO                 |                    |      | 2025.05.26            |       |                            | OT F                  |
|----------|----------------|----------|-----------------------|--------------------|------|-----------------------|-------|----------------------------|-----------------------|
| ł        | <b>金测点位</b>    |          | A. I                  | ADT                |      | 雨水排放口                 | F     |                            | anti                  |
| MINIST N | 羊品编号           | ADT      | FS25010066<br>-4-1-1  |                    | N.   | FS25010066<br>-4-1-2  |       | FS25010066<br>-4-1-3       |                       |
| Į.       | <b>并品状态</b>    |          | 微黄、微浑、<br>无浮          |                    | 微    | 黄、微浑、无异<br>无浮油        | 味、    | Contract Contract Contract | 被浑、无异味<br>无浮油         |
| 检测项目     | 单位             | 检出限      |                       |                    |      | 检测结果                  |       |                            |                       |
| pH值      | 无量纲            |          | 8.5 (26.0             | 5°C)               |      | 8.5 (24.6°C)          |       | 8.8                        | (25.4°C)              |
| 化学需氧量    | mg/L           | 4        | 27                    |                    |      | 26                    | NO.   |                            | 27                    |
| 悬浮物      | mg/L           | <u>-</u> | 29                    |                    |      | 31                    |       | in in                      | 26                    |
| 氨氮       | mg/L           | 0.025    | 0.791                 |                    |      | 0.738                 |       | 0.748                      |                       |
| 石油类      | mg/L           | 0.06     | 0.60                  |                    |      | 0.54                  |       |                            | 0.63                  |
| - A      | o <sup>T</sup> |          | (d)                   | E Pri              |      | TOA == .              | 3     |                            | REVER !               |
| 采        | <b>!</b> 样日期   | NE AD    |                       |                    | 1    | 2025.05.27            | - (d) | BAD                        |                       |
| 检        | 创点位            |          | 10 m                  |                    |      | 雨水排放口                 | 7.00  |                            | 14 Miles              |
| \$\H\S   | 品编号            | AD1      | FS25010066<br>-4-2-1  | FS250100<br>-4-2-2 |      |                       |       | 5010066<br>4-2-4           | FS25010066            |
| AS AS A  | 品状态            | ा र      | 微黄、微浑、<br>无异味、无<br>浮油 | 微黄、微<br>无异味、<br>浮油 |      | 微黄、微浑、<br>无异味、无<br>浮油 | 无昇    | 、微浑、                       | 微黄、微浑、<br>无异味、无<br>浮油 |
| 检测项目     | 单位             | 检出限      | (EAU)                 |                    |      | 检测结果                  |       |                            |                       |
| pH 值     | 无量纲            |          | 8.7(22.8°C)           | 8.8(23.69          | C)   | 8.8(24.9°C)           | 8.70  | 24.8°C)                    | 8.7(23.4°C)           |
| 化学需氧量    | mg/L           | 4/6      | 26                    | 26                 |      | 28                    |       | 27                         | 28                    |
| 悬浮物      | mg/L           |          | 34                    | 26                 |      | 31                    |       | 35                         | 37                    |
| 氨氮       | mg/L           | 0.025    | 1.19                  | 1.22               | 1.30 |                       | 10    | 1.27                       | 1.24                  |
| 石油类      | mg/L           | 0.06     | 0.61                  | 0.58               |      | 0.66                  | (     | ).74                       | 0.51                  |

地址: 江苏省-南京市-江宁区-秣陵街道吉印大道 3008 号 1 幢三层、四层 邮编: 211102 电话(传真): 025-52723263 投诉电话: 18115131122

第 5 页 共 35 页

#### 南京爱迪信环境技术有限公司 检测报告

表(三)有组织废气检测数据结果表

| 检测点位         | 烯烃厂               | 区 VCM 功                                         | 自工业酸装置    | 置 9#排气管 | i出口          | 排气筒高度                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50m           |
|--------------|-------------------|-------------------------------------------------|-----------|---------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 处理设施/处理方式    | VCI               | M 项目工业                                          | 酸装置综合和    | 引用+一级碱  | 洗            | 采样日期                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2025.05.26    |
| 1            | 5510              | 10                                              | 检测条       | 件       |              | \$\tag{\tag{\tag{\tag{\tag{\tag{\tag{                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |
| 参数名称         | 单位                | 检出限                                             | 第一次       | 第二      | 次            | 第三次                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 参考标准          |
| 烟道截面积        | m <sup>2</sup>    | NOT I                                           |           | 0.70    | )88          | - b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | J             |
| 排气中水分含量      | %                 | _                                               | 3.48      | 3.3     | 32           | 3.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -             |
| 排气温度         | °C                | - N                                             | 36.6 36.4 |         | 36.2         | THE STATE OF THE S |               |
| 排气流速         | m/s               | )\ <u> —                                   </u> | 7.76      | 7.:     | 36           | 7.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | =             |
| 烟气流量         | m³/h              | -                                               | 19802     | 187     | 781          | 19164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | water A       |
| 标干流量         | Nm³/h             | 2003                                            | 16796     | 159     | 966          | 16328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 発理            |
| - Anti-      | 104               |                                                 | 检测结       | 果       | and the same | EAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |
| LA PAISE ET  | N. D.             | EN ILLAS                                        | W.        | 第一次     | 400,00       | Marth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6× ±/.1= vii- |
| 检测项目         | 单位                | 检出限                                             | A         | В       | С            | 均值                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 参考标准          |
| 氯乙烯排放浓度      | mg/m³             | 0.08                                            | ND        | ND      | ND           | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10            |
| 氯乙烯排放速率      | kg/h              | 11/5AL                                          |           | -π      | _            | 10.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BAK.          |
| 非甲烷总烃排放浓度    | mg/m³             | 0.07                                            | 1.36      | 1.53    | 1.44         | 1.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20            |
| 非甲烷总烃排放速率    | kg/h              | 51                                              | 0.023     | 0.026   | 0.024        | 0.024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - N           |
| DA MALOTT EN | - C.              | LA 11 ma                                        |           | 第二次     |              | U- ldr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 参考标准          |
| 检测项目         | 单位                | 检出限                                             | A         | В       | C            | 均值                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |
| 氯乙烯排放浓度      | mg/m³             | 0.08                                            | ND        | ND      | ND           | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10            |
| 氯乙烯排放速率      | kg/h              |                                                 | 01        | -       | -            | @  (0) 2'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |
| 非甲烷总烃排放浓度    | mg/m <sup>3</sup> | 0.07                                            | 1.26      | 1.59    | 1.92         | 1.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20            |
| 非甲烷总烃排放速率    | kg/h              | -                                               | 0.020     | 0.025   | 0.031        | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |
| LA NIMES ET  | 24.12.            | 4A +1+ met                                      | 104       | 第三次     | 看            | 1/a /dr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6 4 L VI      |
| 检测项目         | 单位                | 检出限                                             | A         | В       | C            | 均值                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 参考标准          |
| 氯乙烯排放浓度      | mg/m³             | 0.08                                            | ND        | ND      | ND           | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10            |
| 氯乙烯排放速率      | kg/h              | ent A                                           | -         |         |              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I CA AL       |
| 非甲烷总烃排放浓度    | mg/m <sup>3</sup> | 0.07                                            | 1.91      | 1.85    | 1.74         | 1.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20            |
| 非甲烷总烃排放速率    | kg/h              | 3                                               | 0.031     | 0.030   | 0.028        | 0.030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |
| 备注           | 2.排放过<br>3.参考材    | 率由标干流                                           |           |         |              | 乙烯工业污染                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 物排放标准         |

地址: 江苏省-南京市-江宁区-秣陵街道吉印大道 3008 号 1 幢三层、四层

邮编: 211102 电话(传真): 025-52723263 投诉电话: 18115131122

第 6 页 共 35 页

NJADT/JS-300/0-2021

#### 南京爱迪信环境技术有限公司 检测报告

续表(三)有组织废气检测数据结果表

| 检测点位      |                   | X VCM I   | The second second second | 長置 9#排气作  | 商出口   | 排气筒高度     | 50m            |
|-----------|-------------------|-----------|--------------------------|-----------|-------|-----------|----------------|
| 处理设施/处理方式 |                   |           | 100000                   | 利用+一级     |       | 采样日期      | 2025.05.27     |
|           | 72                |           | 检测多                      |           |       | NOTE HAVE | 2020.03.2      |
| 参数名称      | 单位                | 检出限       | 第一次                      |           | 二次    | 第三次       | 参考标准           |
| 烟道截面积     | m <sup>2</sup>    | _         | 7.7                      | 0.7       | 7088  | AND THE   | _              |
| 排气中水分含量   | %                 | -3/10     | 3.42                     | 3.        | .31   | 3.46      |                |
| 排气温度      | °C                | _         | 36.6 36.7                |           | 36.5  |           |                |
| 排气流速      | m/s               | -         | 7.99 7.71                |           | .71   | 7.56      | -70            |
| 烟气流量      | m³/h              | 65VP      | 20389                    | 19        | 674   | 19291     | 181/2/         |
| 标干流量      | Nm³/h             |           | 17304                    | 16        | 709   | 16367     |                |
| 更用/二,     |                   | 14        | 检测丝                      | 吉果        | 看他    |           | TOA            |
| 检测项目      | 单位                | 检出限       | 12                       | 第一次       |       | LL Mr     | Za dy l⇔sds    |
| ①星·沙里·贝 口 | 4-17.             | 492 (日 PR | A                        | В         | С     | 均值        | 参考标准           |
| 氯乙烯排放浓度   | mg/m <sup>3</sup> | 0.08      | ND                       | ND        | ND    | ND        | 10             |
| 氯乙烯排放速率   | kg/h              | ·         | 4 Allina                 | -         | -     | 7-1-1     | -              |
| 非甲烷总烃排放浓度 | mg/m <sup>3</sup> | 0.07      | 1.55                     | 1.85      | 1.91  | 1.77      | 20             |
| 非甲烷总烃排放速率 | kg/h              | V-1       | 0.027                    | 0.032     | 0.033 | 0.031     |                |
| 检测项目      | 单位                | 检出限       | AISAU                    | 第二次       | -T    | Matte.    | do de la villa |
| 位例项目      | 45.177            | ∆M ELIPR  | A                        | В         | С     | 均值        | 参考标准           |
| 氯乙烯排放浓度   | mg/m <sup>3</sup> | 0.08      | ND                       | ND        | ND    | ND        | 10             |
| 氯乙烯排放速率   | kg/h              | 300       | , r <u>-</u>             | = -       | 7 = " |           | 1.8            |
| 非甲烷总烃排放浓度 | mg/m <sup>3</sup> | 0.07      | 2.15                     | 1.79      | 1.90  | 1.95      | 20             |
| 非甲烷总烃排放速率 | kg/h              |           | 0.036                    | 0.030     | 0.032 | 0.033     | TOTAL          |
| 检测项目      | 单位                | 检出限       |                          | 第三次       |       | - Walter  | 会来标准           |
| 型的沙尺口     | 干压                | JWILLIAK  | A                        | В         | C     | 均值        | 参考标准           |
| 氯乙烯排放浓度   | mg/m³             | 0.08      | ND                       | ND        | ND    | ND        | 10             |
| 氯乙烯排放速率   | kg/h              | 10-       | -                        | D-        | -     |           |                |
| 非甲烷总烃排放浓度 | mg/m³             | 0.07      | 2.05                     | 1.91      | 1.42  | 1.79      | 20             |
| 非甲烷总烃排放速率 | kg/h              | ACI       | 0.034                    | 0.031     | 0.023 | 0.029     | 0, -           |
| 备注        | 2.排放速<br>3.参考材    |           | 量和排放浓<br>托方提供,           | 度计算得来参考《烧 |       | 乙烯工业污染4   | 物排放标准》         |

地址: 江苏省-南京市-江宁区-秣陵街道吉印大道 3008 号 1 幢三层、四层邮编: 211102 电话(传真): 025-52723263 投诉电话: 18115131122

第 7 页 共 35 页

NJADT/JS-300/0-2021

### 南京爱迪信环境技术有限公司 检测报告

续表(三)有组织废气检测数据结果表

| 检测点位                   | 丁深,               | , 筛分废气    |                 | 排气筒高度         | 40m    |             |                 |
|------------------------|-------------------|-----------|-----------------|---------------|--------|-------------|-----------------|
| 处理设施/处理方式              | _ 111             | 旋风        | 除尘器+水洗          | 完装置           | HT.G.  | 采样日期        | 2025.05.26      |
|                        | 1                 |           | 检测分             | 件             |        |             | - 45            |
| 参数名称                   | 单位                | 检出限       | 第一次             | 第二            | 二次     | 第三次         | 参考标准            |
| 烟道截面积                  | m <sup>2</sup>    | MA        |                 | 3.1           | 416    | Zidrillo P. | -               |
| 排气中水分含量                | %                 | -         | 12.4            | 4 12.1        |        | 11.6        | 14113           |
| 排气温度                   | °C                | - T       | 50.6            | 0.6 50.1      |        | 49.5        | -               |
| 排气流速                   | m/s               |           | 13.32           | 13.32 13.82   |        |             | -               |
| 烟气流量                   | m³/h              | 711 SE    | 150646          | 156           | 5301   | 153021      | SINTO P         |
| 标干流量                   | Nm³/h             | 4         | 110722 116022   |               |        | 114553      |                 |
| ithis                  | 317               |           | 检测组             | 占果            | -dit   | TO PULL     | 100             |
|                        | 26.40             | TA ALL MA |                 | 第一次           | - 27   | 16. Mr      | 4x +x 1 - x1    |
| 检测项目                   | 单位                | 检出限       | A               | В             | C      | 均值          | 参考标准            |
| 氯乙烯排放浓度                | mg/m <sup>3</sup> | 0.08      | ND              | ND            | ND     | ND          | 10              |
| 氯乙烯排放速率                | kg/h              | g\-^-     | -               |               | -      | -20         | 5^-             |
| 非甲烷总烃排放浓度              | mg/m³             | 0.07      | 1.75            | 1.92          | 1.72   | 1.80        | 20              |
| 非甲烷总烃排放速率              | kg/h              | Test      | 0.194           | 0.213         | 0.190  | 0.199       | n1=             |
| LA NAM ALL             | 44.44             | 48.11.770 |                 | 第二次           |        | Ma like     | 45 - K-1 = VII- |
| 检测项目                   | 单位                | 检出限       | A               | В             | C      | 均值          | 参考标准            |
| 氯乙烯排放浓度                | mg/m³             | 0.08      | ND              | ND            | ND     | ND          | 10              |
| 氯乙烯排放速率                | kg/h              |           | - <del>-</del>  | -             | =      | 2 /E/IS     | 0-10            |
| 非甲烷总烃排放浓度              | mg/m³             | 0.07      | 1.87            | 1.75          | 1.52   | 1.71        | 20              |
| 非甲烷总烃排放速率              | kg/h              | -         | 0.217           | 0.203         | 0.176  | 0.199       | -               |
| LA National Principles | 24.61             | IA di ma  | TOA             | 第三次           |        | 14.64       | 25 de 1=10.     |
| 检测项目                   | 单位                | 检出限       | А               | В             | C      | 均值          | 参考标准            |
| 氯乙烯排放浓度                | mg/m³             | 0.08      | ND              | ND            | ND     | ND          | 10              |
| 氯乙烯排放速率                | kg/h              | TE N      | ) -             | -             | 10 mg/ | -           | 1 CA SI         |
| 非甲烷总烃排放浓度              | mg/m³             | 0.07      | 1.90            | 1.71          | 1.60   | 1.74        | 20              |
| 非甲烷总烃排放速率              | kg/h              | -         | 0.218           | 0.196         | 0.183  | 0.199       |                 |
| 备注                     | 2.排放速<br>3.参考     |           | 流量和排放落<br>托方提供, | 度计算得来<br>参考《烧 |        | 乙烯工业污染      | 物排放标准           |

地址: 江苏省-南京市-江宁区-秣陵街道吉印大道 3008 号 1 幢三层、四层

邮编: 211102 电话(传真): 025-52723263 投诉电话: 18115131122

第 8 页 共 35 页

NJADT/JS-300/0-2021

#### 南京爱迪信环境技术有限公司 检测报告

续表(三)有组织废气检测数据结果表

| 检测点位             | 干燥                | 、筛分废气      | 旋风除尘器<br>(1#排口) | +水洗装置         | 1出口   | 排气简高度      | 40m         |
|------------------|-------------------|------------|-----------------|---------------|-------|------------|-------------|
| 处理设施/处理方式        | STATE             | 旋风         | 除尘器+水治          | 先装置           |       | 采样日期       | 2025.05.2   |
| AD7              |                   |            | 检测:             | 条件            | ADI   | 2300000000 | light.      |
| 参数名称             | 单位                | 检出限        | 第一次             | 第             | 二次    | 第三次        | 参考标准        |
| 烟道截面积            | m <sup>2</sup>    | -          | EAD"            | 3.1416        |       | 772        | -           |
| 排气中水分含量          | %                 | -200       | 12.2            | 11.6          |       | 11.1       | 7           |
| 排气温度             | °C                | 1-1        | 48.3            | 192 4         | 8.0   | 47.3       |             |
| 排气流速             | m/s               | - idal     | 13.63           | 1.            | 3.90  | 14.06      | 10( AV      |
| 烟气流量             | m³/h              | 17.        | 154152          | 15            | 7205  | 159015     | - 1         |
| 标干流量             | Nm³/h             | -          | 114852          | 114852 118107 |       | 120356     | =4          |
| 1000             |                   | JA Blanc   | 检测组             | 吉果            | 72    | Abia:      | Bru'        |
| 检测项目             | M /->             | 4A-d179    | and I           | 第一次           |       |            |             |
| 極例项目             | 单位                | 检出限        | A               | В             | CA    | 均值         | 参考标准        |
| 氯乙烯排放浓度          | mg/m <sup>3</sup> | 0.08       | ND              | ND            | ND    | ND         | 10          |
| 氯乙烯排放速率          | kg/h              | -          | ZISTÉ P         | -             |       |            | -611        |
| 非甲烷总烃排放浓度        | mg/m³             | 0.07       | 1.87            | 2.23          | 2.26  | 2.12       | 20          |
| 非甲烷总烃排放速率        | kg/h              | ~-         | 0.215           | 0.256         | 0.260 | 0.243      | -           |
| 检测项目             | 单位                | 检出限        | BIO             | 第二次           | not   | 16-16-     | 44 1= 10    |
| 19.0012人口        | 中117.             | THE THE    | A               | В             | C     | 均值         | 参考标准        |
| 氯乙烯排放浓度          | mg/m³             | 0.08       | ND              | ND            | ND    | ND         | 10          |
| 氯乙烯排放速率          | kg/h              | 1811       | , r-            | = -           | 1 -   |            | 21/1/20     |
| 非甲烷总烃排放浓度        | mg/m³             | 0.07       | 1.89            | 2.21          | 2.14  | 2.08       | 20          |
| <b>非甲烷总烃排放速率</b> | kg/h              | =          | 0.223           | 0.261         | 0.253 | 0.246      | 707         |
| 检测项目             | 单位                | 检出限        |                 | 第三次           |       | 1Je Mr     | so de la ve |
| 1至6979月日         | 幸匹                | 13V LLI PR | A               | В             | C     | 均值         | 参考标准        |
| 氯乙烯排放浓度          | mg/m³             | 0.08       | ND              | ND            | ND    | ND         | 10          |
| 氯乙烯排放速率          | kg/h              | )/c±       | -               | - Pa          | -     |            |             |
| 非甲烷总烃排放浓度        | mg/m³             | 0.07       | 2.47            | 1.89          | 1.93  | 2.10       | 20          |
| <b>非甲烷总烃排放速率</b> | kg/h              | NTT        | 0.297           | 0.227         | 0.232 | 0.252      | 21          |
| 备注               | 2.排放速<br>3.参考标    |            | 量和排放浓<br>托方提供,  | 度计算得来<br>参考《烧 |       | 乙烯工业污染物    | 勿排放标准)      |

地址: 江苏省-南京市-江宁区-秣陵街道吉印大道 3008 号 1 幢三层、四层 邮编: 211102 电话 (传真): 025-52723263 投诉电话: 18115131122

第 9 页 共 35 页

NJADT/JS-300/0-2021

#### 南京爱迪信环境技术有限公司 检测报告

续表(三)有组织废气检测数据结果表

| 检测点位       | 十燥、               |                                         | E风除尘器+水洗<br>(1#排口) | 表直1出口                 | 排气简高度     | 40m        |
|------------|-------------------|-----------------------------------------|--------------------|-----------------------|-----------|------------|
| 处理设施/处理方式  | - 10              | 99,000,000                              | 全器+水洗装置            | L. The                | 采样日期      | 2025.05.26 |
|            | 700               |                                         | 检测条件               |                       |           |            |
| 参数名称       | 单位                | 检出限                                     | 第一次                | 第二次                   | 第三次       | 参考标准       |
| 烟道截面积      | m <sup>2</sup>    | V/T,                                    |                    | 3.1416                | A Plant   |            |
| 排气中水分含量    | %                 | -                                       | 12.4               | 12.1                  | 11.6      | Just       |
| 排气温度       | °C                | y - 1                                   | 50.6               | 50.1                  | 49.5      |            |
| 排气流速       | m/s               | e - : - : - : - : - : - : - : - : - : - | 13.32              | 13.82                 | 13.53     | -          |
| 烟气流量       | m³/h              | =                                       | 150646             | 156301                | 153021    | A TOTAL A  |
| 标干流量       | Nm³/h             |                                         | 110722             | 116022                | 114553    | March 1    |
| A Contract | AU'               |                                         | 检测结果               |                       | intil All |            |
| 检测项目       | 単位                | 检出限                                     | 第一次                | 第二次                   | 第三次       | 参考标准       |
| 颗粒物排放浓度    | mg/m <sup>3</sup> | 1.0                                     | 1.4                | 2.8                   | 1.7       | 60         |
| 颗粒物排放速率    | kg/h              | -                                       | 0.155              | 0.325                 | 0.195     | -          |
| 检测点位       | 干燥、               | 筛分废气减                                   | E风除尘器+水剂<br>(1#排口) | 夫装置 I 出口              | 排气简高度     | 40m        |
| 处理设施/处理方式  |                   | 旋风防                                     | 全器+水洗装置            |                       | 采样日期      | 2025.05.27 |
|            | 急間                |                                         | 检测条件               |                       | F1(1)     |            |
| 参数名称       | 单位                | 检出限                                     | 第一次                | 第二次                   | 第三次       | 参考标准       |
| 烟道截面积      | m <sup>2</sup>    | 0-                                      |                    | 3.1416                | 24        | \          |
| 排气中水分含量    | %                 | -                                       | 12.2               | 11.6                  | 11.1      | - 2        |
| 排气温度       | °C                | -6//                                    | 48.3               | 48.0                  | 47.3      | Sept.      |
| 排气流速       | m/s               | -                                       | 13.63              | 13.90                 | 14.06     | -1         |
| 烟气流量       | m³/h              | -                                       | 154152             | 157205                | 159015    | 74-1-      |
| 标干流量       | Nm³/h             | 10 <u>-</u> 11/c                        | 114852             | 118107                | 120356    | 101/2°     |
|            | FOA               |                                         | 检测结果               |                       | AD7       |            |
| 检测项目       | 单位                | 检出限                                     | 第一次                | 第二次                   | 第三次       | 参考标准       |
| 颗粒物排放浓度    | mg/m³             | 1.0                                     | 1.5                | 2.2                   | 1.6       | 60         |
| 颗粒物排放速率    | kg/h              | -                                       | 0.172              | 0.260                 | 0.193     | -          |
| 备注         | 2.排放过<br>3.参考相    |                                         | 量和排放浓度计            | and the second second | 氯乙烯工业污染   | 物排放标准      |

地址: 江苏省-南京市-江宁区-秣陵街道吉印大道 3008 号 1 幢三层、四层

邮编: 211102 电话(传真): 025-52723263 投诉电话: 18115131122

第 10 页 共 35 页

NJADT/JS-300/0-2021

#### 南京爱迪信环境技术有限公司 检测报告

续表(三)有组织废气检测数据结果表

| 检测点位                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 干燥                | 、筛分废气       | 旋风除尘器<br>(2#排口) | +水洗装置 2        | 出口       | 排气筒高度    | 40m           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------|-----------------|----------------|----------|----------|---------------|
| 处理设施/处理方式                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F2/67/4           | 旋风          | 除尘器+水泡          | 先装置            |          | 采样日期     | 2025.05.26    |
| - LD1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | 1           | 检测              | 条件             | LOT      | 31113301 | 和电            |
| 参数名称                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 单位                | 检出限         | 第一次             | 第.             | 二次       | 第三次      | 参考标准          |
| 烟道截面积                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m <sup>2</sup>    | -           | EAD             | 3.1            | 416      | 72°'\    | .oπi≤.l       |
| 排气中水分含量                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | %                 | -7514       | 12.2            | 1              | 2.8      | 12.7     | リエミト          |
| 排气温度                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | °C                | -           | 51.0            | 5              | 0.8      | 52.1     | =             |
| 排气流速                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | m/s               | - Table     | 7.82            | 7              | .88      | 7.24     | WATE AND      |
| 烟气流量                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | m³/h              | 7/          | 88442           | 89             | 121      | 81882    |               |
| 标干流量                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Nm³/h             | -           | 65644           | 65745          |          | 60250    |               |
| The state of the s |                   | million Al  | 检测组             | <b></b>        | 1150 - I | /hi>     | BAU:          |
| 检测项目                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36 /2             | 40,11,179   | أعاد            | 第一次            |          | I to Min | Ze de Teren   |
| 1至初5年日                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 单位                | 检出限         | A               | В              | C        | 均值       | 参考标准          |
| 氯乙烯排放浓度                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/m <sup>3</sup> | 0.08        | ND              | ND             | ND       | ND       | 10            |
| 氯乙烯排放速率                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | kg/h              | -           | -108 (B)        | _              | = 1      |          | -             |
| 非甲烷总烃排放浓度                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mg/m <sup>3</sup> | 0.07        | 1.63            | 1.77           | 1.88     | 1.76     | 20            |
| 非甲烷总烃排放速率                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | kg/h              |             | 0.107           | 0.116          | 0.123    | 0.116    | -             |
| 检测项目                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 单位                | 检出限         | WILL AL         | 第二次            | 10       | Ma the   | 42 dv 1 = 361 |
| 10000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 平位.               | DW ITT-PRE  | A               | В              | C        | 均值       | 参考标准          |
| 氯乙烯排放浓度                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/m³             | 0.08        | ND              | ND             | ND       | ND       | 10            |
| 氯乙烯排放速率                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | kg/h              | - ich       | 3 A             | c              | 1 = "    |          | \$id\\ \      |
| 非甲烷总烃排放浓度                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mg/m <sup>3</sup> | 0.07        | 1.92            | 1.91           | 2.00     | 1.94     | 20            |
| 非甲烷总烃排放速率                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | kg/h              | _           | 0.126           | 0.126          | 0.131    | 0.128    | TOTAL         |
| 检测项目                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 单位                | 检出限         |                 | 第三次            |          | 均值       | 参考标准          |
| 194.007-701                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +177              | DW. LLI PRE | A S             | В              | C        | 为恒       | 参写标准          |
| 氯乙烯排放浓度                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/m³             | 0.08        | ND              | ND             | ND       | ND       | 10            |
| 氯乙烯排放速率                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | kg/h              | 0/4-        | -               | NOT            | -        |          | 20 =          |
| 非甲烷总烃排放浓度                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mg/m <sup>3</sup> | 0.07        | 1.99            | 1.64           | 1.76     | 1.80     | 20            |
| 非甲烷总烃排放速率                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | kg/h              | 100         | 0.120           | 0.099          | 0.106    | 0.108    | 9 \ - I       |
| 备注                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.排放速<br>3.参考标    |             | 瓦量和排放落<br>托方提供, | 度计算得来<br>参考《烧· |          | 乙烯工业污染物  | 物排放标准》        |

地址: 江苏省-南京市-江宁区-秣陵街道吉印大道 3008 号 1 幢三层、四层邮编: 211102 电话(传真): 025-52723263 投诉电话: 18115131122

第 11 页 共 35 页

NJADT/JS-300/0-2021

#### 南京爱迪信环境技术有限公司 检测报告

续表(三)有组织废气检测数据结果表

| 检测点位           | 十燥、               | . 筛分废气     |                 | 排气筒高度 | 40m      |           |                |
|----------------|-------------------|------------|-----------------|-------|----------|-----------|----------------|
| 处理设施/处理方式      | - W               | 旋风         | 除尘器+水洗          | 装置    |          | 采样日期      | 2025.05.27     |
|                | 7,500             |            | 检测穿             | 件     |          | 76        | 20             |
| 参数名称           | 单位                | 检出限        | 第一次             | 第二    | 次        | 第三次       | 参考标准           |
| 烟道截面积          | m <sup>2</sup>    | P/T        |                 | 3.1   | 416      | 6 (A) (B) | -              |
| 排气中水分含量        | %                 | -          | 12.9            | 12    | 7        | 12.3      | - Z(H)         |
| 排气温度           | °C                | A = 1      | 51.0 50.8       |       | 49.5     | 4         |                |
| 排气流速           | m/s               |            | 7.49            | 7.    | 38       | 7.36      | -              |
| 烟气流量           | m³/h              | 3.dl       | 84710           | 834   | 166      | 83240     | SAIHTE P       |
| 标干流量           | Nm³/h             | 194        | 61963           | 61    | 185      | 61548     |                |
| - idili        | 17                |            | 检测组             | 丰果    | SAIN S   | (BPC      |                |
| LK Malwest Fra | Mr. LX            | 4A ctures  | ~               | 第一次   |          | D-De      | AND IT WE      |
| 检测项目           | 单位                | 检出限        | A               | В     | С        | 均值        | 参考标准           |
| 氯乙烯排放浓度        | mg/m <sup>3</sup> | 0.08       | ND              | ND    | ND       | ND        | 10             |
| 氯乙烯排放速率        | kg/h              | 0/         | 1               |       | -        | -5/67     | 5 P. T.        |
| 非甲烷总烃排放浓度      | mg/m <sup>3</sup> | 0.07       | 1.90            | 2.12  | 1.39     | 1.80      | 20             |
| 非甲烷总烃排放速率      | kg/h              | 77         | 0.118           | 0.131 | 0.086    | 0.112     | - M            |
| LA NAME OF THE | A4 12-            | 18.11.1111 |                 | 第二次   |          | 1/- /     | 参考标准           |
| 检测项目           | 单位                | 检出限        | A               | В     | C        | 均值        |                |
| 氯乙烯排放浓度        | mg/m³             | 0.08       | ND              | ND    | ND       | ND        | 10             |
| 氯乙烯排放速率        | kg/h              |            | Ton.            |       | -        | # 101/2°  | -              |
| 非甲烷总烃排放浓度      | mg/m³             | 0.07       | 1.58            | 1.83  | 1.57     | 1.66      | 20             |
| 非甲烷总烃排放速率      | kg/h              | -          | 0.097           | 0.112 | 0.096    | 0.102     | -              |
| W 30 et 17     | 36.63.            | AA HURET   | 104             | 第三次   |          | 16.64     | 45 -17 1 - 14b |
| 检测项目           | 单位                | 检出限        | A               | В     | С        | 均值        | 参考标准           |
| 氯乙烯排放浓度        | mg/m³             | 0.08       | ND              | ND    | ND       | ND        | 10             |
| 氯乙烯排放速率        | kg/h              | Z = N      | )\              |       | US THE I | 75        | 1 GA 31        |
| 非甲烷总烃排放浓度      | mg/m³             | 0.07       | 1.82            | 2.12  | 1.92     | 1.95      | 20             |
| 非甲烷总烃排放速率      | kg/h              |            | 0.112           | 0.130 | 0.118    | 0.120     |                |
| 备注             | 2.排放速<br>3.参考本    |            | 元量和排放浓<br>托方提供, |       |          | 乙烯工业污染    | 物排放标准          |

地址: 江苏省-南京市-江宁区-秣陵街道吉印大道 3008 号 1 幢三层、四层邮编: 211102 电话(传真): 025-52723263 投诉电话: 18115131122

第 12 页 共 35 页

NJADT/JS-300/0-2021

# 南京爱迪信环境技术有限公司 检测报告

续表(三)有组织废气检测数据结果表

| 检测点位        | 十燥                | 、筛分废气加    | 定风除尘器+水泊<br>(2#排口) | 先装置 2 出口 | 排气简高度          | 40m        |
|-------------|-------------------|-----------|--------------------|----------|----------------|------------|
| 处理设施/处理方式   | 100               | 旋风隙       | 全尘器+水洗装量           | 4        | 采样日期           | 2025.05.26 |
| LIE AD!     |                   |           | 检测条件               | AD       |                | 11         |
| 参数名称        | 单位                | 检出限       | 第一次                | 第二次      | 第三次            | 参考标准       |
| 烟道截面积       | m <sup>2</sup>    |           | EAD1               | 3.1416   | 12/12/         | and a      |
| 排气中水分含量     | %                 | -5/10     | 12.2               | 12.8     | 12.7           | 可见         |
| 排气温度        | °C                | _         | 51.0               | 50.8     | 52.1           | _          |
| 排气流速        | m/s               |           | 7.82               | 7.88     | 7.24           | -AU        |
| 烟气流量        | m³/h              | 1 m       | 88442              | 89121    | 81882          | PU-1-      |
| 标干流量        | Nm³/h             | -         | 65644              | 65745    | 60250          | -          |
| <b>多</b> 加仁 |                   | OA Sim    | 检测结果               | 700      | \\             | EAU        |
| 检测项目        | 单位                | 检出限       | 第一次                | 第二次      | 第三次            | 参考标准       |
| 颗粒物排放浓度     | mg/m <sup>3</sup> | 1.0       | 1.1                | 1.3      | 1.5            | 60         |
| 颗粒物排放速率     | kg/h              | 107       | 0.072              | 0.085    | 0.090          | AU L       |
|             | E.C.              |           |                    |          | P. Start       |            |
| 检测点位        | 干燥、               | 筛分废气放     | 区风除尘器+水剂<br>(2#排口) | t装置2出口   | 排气筒高度          | 40m        |
| 处理设施/处理方式   | SIEI/P            | 旋风隙       | 尘器+水洗装置            | Ï.       | 采样日期           | 2025.05.27 |
| 70,         |                   | <b>SA</b> | 检测条件               | us nDT   |                | TENTAL.    |
| 参数名称        | 单位                | 检出限       | 第一次                | 第二次      | 第三次            | 参考标准       |
| 烟道截面积       | m <sup>2</sup>    | -         | LO1                | 3.1416   | \$\lin(\b),    | = 10       |
| 排气中水分含量     | %                 |           | 12.9               | 12.7     | 12.3           | SOUTH TO   |
| 排气温度        | °C                | -         | 51.0               | 50.8     | 49.5           | -          |
| 排气流速        | m/s               |           | 7.49               | 7.38     | 7.36           | 107 s.     |
| 烟气流量        | m³/h              |           | 84710              | 83466    | 83240          | 11/2 -     |
| 标干流量        | Nm³/h             |           | 61963              | 61185    | 61548          | -          |
| <b>新闻</b> 。 |                   |           | 检测结果               |          |                | 104        |
| 检测项目        | 单位                | 检出限       | 第一次                | 第二次      | 第三次            | 参考标准       |
| 颗粒物排放浓度     | mg/m³             | 1.0       | 1.2                | 1.8      | 1.7            | 60         |
| 颗粒物排放速率     | kg/h              | 17-7      | 0.074              | 0.110    | 0.105          | oT - To    |
| 备注          | 2.排放速<br>3.参考标    |           | 量和排放浓度计            |          | <b>氯乙烯工业污染</b> | 物排放标准》     |

地址: 江苏省-南京市-江宁区-秣陵街道吉印大道 3008 号 1 幢三层、四层邮编: 211102 电话(传真): 025-52723263 投诉电话: 18115131122

第 13 页 共 35 页

NJADT/JS-300/0-202

### 南京爱迪信环境技术有限公司 检测报告

续表(三)有组织废气检测数据结果表

| 检测点位                                        | 5                 | 气力软     | 命送废气 5#排口     |         | 排气筒高度      | 45m        |
|---------------------------------------------|-------------------|---------|---------------|---------|------------|------------|
| 处理设施/处理方式                                   | A III             |         | 布袋除尘          | 10000   | 采样日期       | 2025.05.26 |
| T De la | ×111              |         | 检测条件          |         | 1/19/12    | 3 1        |
| 参数名称                                        | 单位                | 检出限     | 第一次           | 第二次     | 第三次        | 参考标准       |
| 烟道截面积                                       | m <sup>2</sup>    | -at     |               | 0.1257  |            | a ( = /    |
| 排气中水分含量                                     | %                 | h'-     | 2.23          | 2.26    | 2.29       |            |
| 排气温度                                        | °C                | -       | 38.1          | 37.1    | 35.2       | 18)z       |
| 排气流速                                        | m/s               | 7- 1    | 20.80         | 20.99   | 20.58      | -          |
| 烟气流量                                        | m³/h              | -:      | 9410          | 9496    | 9310       |            |
| 标干流量                                        | Nm³/h             | (A)(Z   | 8045          | 8147    | 8038       | 416 P      |
| ALE ALE                                     |                   |         | 检测结果          |         | The same   |            |
| 检测项目                                        | 单位                | 检出限     | 第一次           | 第二次     | 第三次        | 参考标准       |
| 颗粒物排放浓度                                     | mg/m <sup>3</sup> | 1.0     | 1.2           | 2.1     | 1.9        | 60         |
| 颗粒物排放速率                                     | kg/h              |         | 0.010         | 0.017   | 0.015      |            |
| - idl 5                                     |                   | ~       |               | 9112    | EP-        | -1         |
| 检测点位                                        |                   | 气力车     | 排气简高度         | 45m     |            |            |
| 处理设施/处理方式                                   |                   |         | 布袋除尘          | 采样日期    | 2025.05.27 |            |
| «idlist"                                    |                   | -1      | 检测条件          | - Hills |            |            |
| 参数名称                                        | 单位                | 检出限     | 第一次           | 第二次     | 第三次        | 参考标准       |
| 烟道截面积                                       | m <sup>2</sup>    |         |               | 0.1257  | 1          | - A 18     |
| 排气中水分含量                                     | %                 | AT- 1   | 2.31          | 2.34    | 2.36       | T 1        |
| 排气温度                                        | °C                | re.     | 36.6          | 35.1    | 33.8       |            |
| 排气流速                                        | m/s               |         | 20.73         | 20.37   | 20.29      | 41515      |
| 烟气流量                                        | m³/h              |         | 9378          | 9215    | 9179       | -          |
| 标干流量                                        | Nm³/h             | -       | 8050          | 7951    | 7953       | -          |
|                                             | 1                 | اللقالي | 检测结果          | -7      | No.        |            |
| 检测项目                                        | 单位                | 检出限     | 第一次           | 第二次     | 第三次        | 参考标准       |
| 颗粒物排放浓度                                     | mg/m³             | 1.0     | 1.3           | 2.1     | 1.9        | 60         |
| 颗粒物排放速率                                     | kg/h              | die A   | 0.010         | 0.017   | 0.015      | A PY       |
| 备注                                          | 2.排放速<br>3.参考材    |         | 量和排放浓度记托方提供,参 |         | 氯乙烯工业污染    | 物排放标准      |

地址: 江苏省-南京市-江宁区-秣陵街道吉印大道 3008 号 1 幢三层、四层 邮编: 211102 电话(传真): 025-52723263 投诉电话: 18115131122 第 14 页 共 35 页

NJADT/JS-300/0-2021

#### 南京爱迪信环境技术有限公司 检测报告

续表(三)有组织废气检测数据结果表

| 检测点位         |                    | 气力等  | 俞送废气 7#排口 | I am       | 排气筒高度   | 45m        |
|--------------|--------------------|------|-----------|------------|---------|------------|
| 处理设施/处理方式    | - said             | , NV | 布袋除尘      |            | 采样日期    | 2025.05.26 |
|              | AT .               |      | 检测条件      |            | ( P- \  | - itiis    |
| 参数名称         | 单位                 | 检出限  | 第一次       | 第二次        | 第三次     | 参考标准       |
| 烟道截面积        | m <sup>2</sup>     | - I  | 4         | 0.1257     | WHE AL  | =          |
| 排气中水分含量      | %                  |      | 2.5       | 2.3        | 2.4     | - 16TH     |
| 排气温度         | °C                 | ->-  | 36        | 35         | 34      | 7          |
| 排气流速         | m/s                | 121  | 19.7      | 18.5       | 19.1    |            |
| 烟气流量         | m³/h               |      | 8924      | 8382       | 8648    | addis-ALV  |
| 标干流量         | Nm <sup>3</sup> /h | 72-1 | 7663      | 7231       | 7495    |            |
| an E         | KU.                |      | 检测结果      | -          | (EAV    | - 01       |
| 检测项目         | 单位                 | 检出限  | 第一次       | 第二次        | 第三次     | 参考标准       |
| 颗粒物排放浓度      | mg/m <sup>3</sup>  | 1.0  | 2.2       | 2.0        | 2.3     | 60         |
| 颗粒物排放速率      | kg/h               |      | 0.017     | 0.014      | 0.017   |            |
| The state of | - 10               | EVU. |           |            | - Althi | N. C.      |
| 检测点位         | 1                  | 气力车  | 俞送废气 7#排口 | 排气简高度      | 45m     |            |
| 处理设施/处理方式    |                    | _ ~  | 布袋除尘      | ~ dilli Al | 采样日期    | 2025.05.27 |
| 和中人          | ~ idht.            | XV'  | 检测条件      | 7-1        | A Ships |            |
| 参数名称         | 单位                 | 检出限  | 第一次       | 第二次        | 第三次     | 参考标准       |
| 烟道截面积        | m <sup>2</sup>     | - "P | ٠/        | 0.1257     | - T     | /F= \      |
| 排气中水分含量      | %                  | -    | 2.3       | 2.4        | 2.2     | -          |
| 排气温度         | °C                 | June | 36        | 36         | 33      | "A Shring  |
| 排气流速         | m/s                | 200  | 19.8      | 19.4       | 19.7    | AT         |
| 烟气流量         | m <sup>3</sup> /h  | -    | 8963      | 8785       | 8935    |            |
| 标干流量         | Nm³/h              | P1   | 7711      | 7548       | 7764    | AL AU      |
| 40 ' I       |                    |      | 检测结果      | NO.        |         |            |
| 检测项目         | 单位                 | 检出限  | 第一次       | 第二次        | 第三次     | 参考标准       |
| 颗粒物排放浓度      | mg/m³              | 1.0  | 2.0       | 2.5        | 2.2     | 60         |
| 颗粒物排放速率      | kg/h               | -    | 0.015     | 0,019      | 0.017   | -          |
| 备注           | 2.排放速<br>3.参考标     |      | 量和排放浓度计   |            | 氯乙烯工业污染 | 物排放标准》     |

地址: 江苏省-南京市-江宁区-秣陵街道吉印大道 3008 号 1 幢三层、四层邮编: 211102 电话(传真): 025-52723263 投诉电话: 18115131122

第 15 页 共 35 页

NJADT/JS-300/0-2021

#### 南京爱迪信环境技术有限公司 检测报告

续表(三)有组织废气检测数据结果表

| 检测点位            | 包              | 装废气袋式   | 除尘器出口(10          | 0#排口)  | 排气筒高度      | 23.6m      |
|-----------------|----------------|---------|-------------------|--------|------------|------------|
| 处理设施/处理方式       |                | To.     | 布袋除尘              | 1/3/18 | 采样日期       | 2025.05.26 |
| 7               | 1113           |         | 检测条件              | 7 . "  | - Althies  |            |
| 参数名称            | 单位             | 检出限     | 第一次               | 第二次    | 第三次        | 参考标准       |
| 烟道截面积           | m <sup>2</sup> | 7       |                   | 0.1590 |            | ~í - "     |
| 排气中水分含量         | %              | A-      | 2.4               | 2.1    | 2.0        |            |
| 排气温度            | °C             | -       | 30                | 30     | 30         |            |
| 排气流速            | m/s            | ( - "   | 10.0              | 10.6   | 10.3       | =          |
| 烟气流量            | m³/h           | -       | 5738              | 6058   | 5893       |            |
| 标干流量            | Nm³/h          | 3///    | 5037              | 5342   | 5206       | Silling!   |
| III AC          |                | 77=     | 检测结果              |        |            |            |
| 检测项目            | 单位             | 检出限     | 第一次               | 第二次    | 第三次        | 参考标准       |
| 颗粒物排放浓度         | mg/m³          | 1.0     | 1.9               | 1.8    | 2.1        | 60         |
| 颗粒物排放速率         | kg/h           | 72      | 0.010             | 0.010  | 0.011      | -          |
| المالية المالية |                |         | (                 | 40     | SPV        |            |
| 检测点位            | 包              | 装废气袋式   | 除尘器出口(1           | 排气筒高度  | 23.6m      |            |
| 处理设施/处理方式       | 1150           |         | 布袋除尘              |        | 采样日期       | 2025.05.27 |
| - AMERIC        |                | ~1      | 检测条件              | < (8)  | No.        |            |
| 参数名称            | 单位             | 检出限     | 第一次               | 第二次    | 第三次        | 参考标准       |
| 烟道截面积           | m <sup>2</sup> |         | aidt A            | 0.1590 | ( ** ** ** | = 111      |
| 排气中水分含量         | %              |         | 1.9               | 1.8    | 1.9        | 1 112      |
| 排气温度            | °C             |         | 30                | 30     | 29         | -          |
| 排气流速            | m/s            | -2.10   | 10.0              | 11.1   | 10.2       | ाम/जि      |
| 烟气流量            | m³/h           |         | 5765              | 6365   | 5850       | -          |
| 标干流量            | Nm³/h          |         | 5088              | 5630   | 5189       |            |
| 172             |                | 411115  | 检测结果              | ~1     |            | A CHEST    |
| 检测项目            | 单位             | 检出限     | 第一次               | 第二次    | 第三次        | 参考标准       |
| 颗粒物排放浓度         | mg/m³          | 1.0     | 2.9               | 2.6    | 2.7        | 60         |
| 颗粒物排放速率         | kg/h           | Id Blos | 0.015             | 0.015  | 0.014      | NEPY       |
| 备注              | 2.排放速<br>3.参考材 |         | 量和排放浓度;<br>托方提供,参 |        | 氯乙烯工业污染    | 物排放标准      |

地址: 江苏省-南京市-江宁区-秣陵街道吉印大道 3008 号 I 幢三层、四层邮编: 211102 电话(传真): 025-52723263 投诉电话: 18115131122

第 16 页 共 35 页

NJADT/JS-300/0-2021

#### 南京爱迪信环境技术有限公司 检测报告

续表(三)有组织废气检测数据结果表

| 检测点位        | 聚合                | 废水池废气                                 | 二级活性炭吸进               | 排                     | 气筒高度                  | NOT "                 |  |
|-------------|-------------------|---------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|--|
| 处理设施/处理方式   | 意地                |                                       | - ADT                 | R                     | <b>E</b> 样日期          | 2025.05.26            |  |
| I DA Elibia |                   | _1                                    | 检测条件                  | A JIHIN               |                       | ~T                    |  |
| 参数名称        | 单位                | 检出限                                   | 第一次                   |                       | 第二次                   | 第三次                   |  |
| 烟道截面积       | m <sup>2</sup>    | -5/6                                  | 0.0491                |                       |                       | 15 m                  |  |
| 排气中水分含量     | %                 | -                                     | 7.1                   |                       | 7.0                   | 6.9                   |  |
| 排气温度        | °C                | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 36                    | TOTAL                 | 41                    | 41                    |  |
| 排气流速        | m/s               | _                                     | 11.2                  |                       | 11.5                  | 11.8                  |  |
| 烟气流量        | m³/h              | 順岸內                                   | 1986                  |                       | 2040                  | 2089                  |  |
| 标干流量        | Nm³/h             | -                                     | 1632                  | _ ank                 | 1651                  | 1689                  |  |
| T BUT       | ₽ii≥              | BAU"                                  | 检测结果                  | Altre I               | Silve                 | (EAU)                 |  |
| 检测项目        | 单位                | 检出限                                   | 海面层下                  | 第一次                   | DT                    | - W.W.                |  |
| 包. 例子贝 口    | 4位                | 在 III PR                              | A                     | В                     | C                     | 均值                    |  |
| 非甲烷总烃排放浓度   | mg/m <sup>3</sup> | 0.07                                  | 3.35                  | 3.54                  | 3.74                  | 3.54                  |  |
| 非甲烷总烃排放速率   | kg/h              | 1 -                                   | 5.47×10 <sup>-3</sup> | 5.78×10 <sup>-3</sup> | 6.10×10 <sup>-3</sup> | 5.79×10 <sup>-3</sup> |  |
| 检测项目        | 单位                | 检出限                                   | 第二                    |                       | 1,-1-1                | A STORES              |  |
| 位例列目        | #W.               | ANY ITT PICE                          | A TANK                | В                     | C                     | 均值                    |  |
| 非甲烷总烃排放浓度   | mg/m³             | 0.07                                  | 4.63                  | 3.51                  | 3.53                  | 3.89                  |  |
| 非甲烷总烃排放速率   | kg/h              | // _ \<br>\                           | 7.64×10 <sup>-3</sup> | 5.80×10 <sup>-3</sup> | 5.83×10 <sup>-3</sup> | 6.74×10 <sup>-3</sup> |  |
| 检测项目        | 单位                | 检出限                                   |                       | 第三次                   | le.                   | A Pure                |  |
| 加速域學自       | -de-lat           | DK ITT BK                             | A                     | В                     | c                     | 为值                    |  |
| 非甲烷总烃排放浓度   | mg/m <sup>3</sup> | 0.07                                  | 4.15                  | 4.20                  | 4.41                  | 4.25                  |  |
| 非甲烷总烃排放速率   | kg/h              | -                                     | 7.01×10 <sup>-3</sup> | 7.09×10 <sup>-3</sup> | 7.45×10 <sup>-3</sup> | 7.23×10 <sup>-3</sup> |  |
| 备注          | 排放速率              | 区由标干流量                                | 量和排放浓度计算              | 7得来。                  | TO THE                | 7                     |  |

地址: 江苏省-南京市-江宁区-秣陵街道吉印大道 3008 号 1 幢三层、四层 邮编: 211102 电话(传真): 025-52723263 投诉电话: 18115131122

第 17 页 共 35 页

#### 南京爱迪信环境技术有限公司 检测报告

续表(三)有组织废气检测数据结果表

| 海市                | EAC#                                            | 级活性炭吸                                                                                                                 | 附                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 采样日期                  | 2025.05.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F                 | 1/                                              |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                      | THE RESERVE OF THE PARTY OF THE |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                                                 | 检测分                                                                                                                   | 件                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A STORY               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 单位                | 检出限                                             | 第一次                                                                                                                   | 第二                                                                                                                                                                                                                                                                                                                                                                   | 次                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 第三次                   | 参考标准                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| m <sup>2</sup>    | -                                               | 0.0507                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                      | 507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 過過一                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| %                 | J- 1                                            | 4.25                                                                                                                  | 4.                                                                                                                                                                                                                                                                                                                                                                   | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.24                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| °C                | "==                                             | 36.9                                                                                                                  | 36                                                                                                                                                                                                                                                                                                                                                                   | 5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 36.7                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| m/s               | 可能                                              | 10.04                                                                                                                 | 10                                                                                                                                                                                                                                                                                                                                                                   | .05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.25                 | Sall Hand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| m³/h              | 4.1                                             | 1831 1833                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                      | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1870                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Nm³/h             | ا قالما د                                       | 1557 1557                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                      | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1590                  | Ortollar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| T                 | 1)- \                                           | 检测组                                                                                                                   | 古果                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - T                   | ACTIVE TO SERVICE TO S |
| No Inc            | 1A DETTO                                        | T                                                                                                                     | 第一次                                                                                                                                                                                                                                                                                                                                                                  | 后面[2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ma IAi                | 参考标准                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <b>毕</b> 位        | 極出限                                             | A                                                                                                                     | В                                                                                                                                                                                                                                                                                                                                                                    | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 均值                    | 多为你能                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| mg/m³             | 0.07                                            | 2.27                                                                                                                  | 2.06                                                                                                                                                                                                                                                                                                                                                                 | 2.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.34                  | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| kg/h              | 3PY                                             | 3.53×10 <sup>-3</sup>                                                                                                 | 3.21×10 <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                | 4.17×10 <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.85×10 <sup>-3</sup> | Y - I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 36.73             | 7447747 4000                                    | 第二次                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 451645                | 4x 4y 1=345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 単位.               | 極出限                                             | A                                                                                                                     | В                                                                                                                                                                                                                                                                                                                                                                    | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 功但                    | 参考标准                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| mg/m <sup>3</sup> | 0.07                                            | 2.60                                                                                                                  | 2.84                                                                                                                                                                                                                                                                                                                                                                 | 2.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.51                  | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| kg/h              | = "                                             | 4.05×10 <sup>-3</sup>                                                                                                 | 4.42×10 <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                | 3.27×10 <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.66×10 <sup>-3</sup> | - /-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 36.11.            | 1.5 .1. 111                                     | ABT                                                                                                                   | 第三次                                                                                                                                                                                                                                                                                                                                                                  | NEW YEAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I La Ma               | 42 de 1-30.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 単位                | 检出限                                             | A                                                                                                                     | В                                                                                                                                                                                                                                                                                                                                                                    | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 均值                    | 参考标准                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| mg/m³             | 0.07                                            | 2.50                                                                                                                  | 2.76                                                                                                                                                                                                                                                                                                                                                                 | 2.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.45                  | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| kg/h              |                                                 | 3.98×10 <sup>-3</sup>                                                                                                 | 4.39×10 <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                | 3.32×10 <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.65×10 <sup>-3</sup> | 10-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1                 | % °C m/s m³/h Nm³/h 单位 mg/m³ kg/h 单位 mg/m³ kg/h | % —  °C —  m/s —  m³/h —  Nm³/h —  单位 检出限  mg/m³ 0.07  kg/h —  单位 检出限  mg/m³ 0.07  kg/h —  单位 检出限  mg/m³ 0.07  kg/h — | %     -     4.25       °C     -     36.9       m/s     -     10.04       m³/h     -     1831       Nm³/h     -     1557       检测结     A       单位     检出限     A       mg/m³     0.07     2.27       kg/h     -     3.53×10¬³       单位     检出限     A       mg/m³     0.07     2.60       kg/h     -     4.05×10¬³       单位     检出限     A       mg/m³     0.07     2.50 | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

地址: 江苏省-南京市-江宁区-秣陵街道吉印大道 3008 号 1 幢三层、四层邮编: 211102 电话(传真): 025-52723263 投诉电话: 18115131122

第 18 页 共 35 页

NJADT/JS-300/0-2021

#### 南京爱迪信环境技术有限公司 检测报告

续表(三)有组织废气检测数据结果表

| 检测点位                                    | 聚合             | 废水池废气       | 二级活性炭吸进               | 口排气                   | 简高度                   | TOA                   |  |
|-----------------------------------------|----------------|-------------|-----------------------|-----------------------|-----------------------|-----------------------|--|
| 处理设施/处理方式                               | 通道             | 311         | - ADT                 | 采样                    | 作日期 高間 19             | 2025.05.27            |  |
| AD7                                     |                | ~~ 1        | 检测条件                  | O.A. Ellinia          |                       | T                     |  |
| 参数名称                                    | 单位             | 检出限         | 第一次                   | 第                     | 二次,图                  | 第三次                   |  |
| 烟道截面积                                   | m <sup>2</sup> | -6/10       | 0.0491                |                       |                       | 利用                    |  |
| 排气中水分含量                                 | %              | -           | 6.8 6.9               |                       | 5.9                   | 6.7                   |  |
| 排气温度                                    | °C             | 62-41\F     | 30                    | TOL                   | 31                    | 37                    |  |
| 排气流速                                    | m/s            | -           | 14.2 14               |                       | 4.2                   | 14.4                  |  |
| 烟气流量                                    | m³/h           | 順馬人         | 2511 250              |                       | 509                   | 2541                  |  |
| 标干流量                                    | Nm³/h          | -           | 2109                  | 097                   | 2086                  |                       |  |
| T BUT                                   | £/(1           | BAD"        | 检测结果                  | 74                    | 3/19/36               | 3AD 1                 |  |
| 检测项目                                    | 单位             | 检出限         | 是他一个                  | 第一次                   | 77                    |                       |  |
| 1至6号列口                                  | 中位             | AM III PR   | A                     | В                     | C                     | 均值                    |  |
| 非甲烷总烃排放浓度                               | mg/m³          | 0.07        | 3.87                  | 3.71                  | 4.34                  | 3.97                  |  |
| 非甲烷总烃排放速率                               | kg/h           | 1 =         | 8.16×10 <sup>-3</sup> | 7.82×10 <sup>-3</sup> | 9.15×10 <sup>-3</sup> | 8.66×10 <sup>-3</sup> |  |
| 检测项目                                    | 单位             | 检出限         | 第                     |                       | 第二次                   |                       |  |
| 195000000000000000000000000000000000000 | AD.            | DW ITT PRE  | A jall                | В                     | C                     | 均值                    |  |
| 非甲烷总烃排放浓度                               | mg/m³          | 0.07        | 4.09                  | 3.87                  | 3.52                  | 3.83                  |  |
| 非甲烷总烃排放速率                               | kg/h           | -           | 8.58×10 <sup>-3</sup> | 8.12×10 <sup>-3</sup> | 7.38×10 <sup>-3</sup> | 7.98×10 <sup>-3</sup> |  |
| 检测项目                                    | 单位             | 检出限         |                       | 第三次                   |                       | EAD.                  |  |
| 1947年7月1                                | 44-197         | TAX ELL PRE | A                     | В                     | C                     | 均值                    |  |
| 非甲烷总烃排放浓度                               | mg/m³          | 0.07        | 3.66                  | 3.78                  | 3.36                  | 3.60                  |  |
| 非甲烷总烃排放速率                               | kg/h           | -           | 7.63×10 <sup>-3</sup> | 7.89×10 <sup>-3</sup> | 7.01×10 <sup>-3</sup> | 7.32×10 <sup>-3</sup> |  |
| 备注                                      | 排放速率           | 由标干流量       | 是和排放浓度计算              | 7得来。                  |                       | 7                     |  |

地址: 江苏省-南京市-江宁区-秣陵街道吉印大道 3008 号 1 幢三层、四层 邮编: 211102 电话(传真): 025-52723263 投诉电话: 18115131122

第 19 页 共 35 页

#### 南京爱迪信环境技术有限公司 检测报告

续表(三)有组织废气检测数据结果表

| 检测点位           | 聚合废                    | 水池废气二         | 二级活性炭吸                                  | 出口 (11#               | 排口)                                   | 排气简高度                    | 25m           |
|----------------|------------------------|---------------|-----------------------------------------|-----------------------|---------------------------------------|--------------------------|---------------|
| 处理设施/处理方式      | 1 - 74                 | III ACE       | 级活性炭吸                                   | 附                     | 海田(三                                  | 采样日期                     | 2025.05.27    |
|                | Trailler               | 1             | 检测条                                     | 件                     |                                       | T Print                  |               |
| 参数名称           | 单位                     | 检出限           | 第一次                                     | 第                     | 二次                                    | 第三次                      | 参考标准          |
| 烟道截面积          | m <sup>2</sup>         | ~             | 0.0507                                  |                       | · · · · · · · · · · · · · · · · · · · | -                        |               |
| 排气中水分含量        | %                      |               | 4.11 4.16                               |                       | 4.12                                  |                          |               |
| 排气温度           | °C                     | )' <u>_</u>   | 31.0                                    | (a)                   | 31.7                                  | 33.2                     |               |
| 排气流速           | m/s                    | 3/0           | 13.58                                   | 1                     | 3.59                                  | 13.69                    |               |
| 烟气流量           | m³/h                   | -             | 2477 2479                               |                       | 2497                                  | -                        |               |
| 标干流量           | Nm³/h                  | ista.         | 2139 2135                               |                       | 2141                                  | nd British               |               |
| W.             | 75                     | 12-1          | 检测组                                     | <b></b>               |                                       | SOF                      |               |
|                | 34 13.                 | LA (I) (first |                                         | 第一次                   | 1919                                  | 14- febr                 | 40 - K-1 - WI |
| 检测项目           | 单位                     | 检出限           | A                                       | В                     | C                                     | 一 均值<br>一                | 参考标准          |
| 非甲烷总烃排放浓度      | mg/m³                  | 0.07          | 2.64                                    | 2.70                  | 2.75                                  | 2.70                     | 20            |
| 非甲烷总烃排放速率      | kg/h                   | AL.           | 5.65×10 <sup>-3</sup>                   | 5.78×10 <sup>-3</sup> | 5.88×10                               | -3 5.76×10 <sup>-3</sup> | ~ -           |
| LA SMI SMI ET  | NA 724                 | LA (1) mm     | 第二次                                     |                       |                                       | 均值                       | 参考标准          |
| 检测项目           | 单位                     | 检出限           | A                                       | В                     | C                                     | 均值                       | 参考标准          |
| 非甲烷总烃排放浓度      | mg/m <sup>3</sup>      | 0.07          | 2.83                                    | 2.48                  | 2.12                                  | 2.48                     | 20            |
| 非甲烷总烃排放速率      | kg/h                   | -             | 6.04×10 <sup>-3</sup>                   | 5.29×10 <sup>-3</sup> | 4.53×10                               | 5.28×10 <sup>-3</sup>    |               |
| AA Madeell 194 | A4 / A4                | IA ULUTI      | TOA                                     | 第三次                   | -                                     | IL-No                    | so to Leville |
| 检测项目           | 单位                     | 检出限           | A                                       | В                     | С                                     | - 均值                     | 参考标准          |
| 非甲烷总烃排放浓度      | mg/m³                  | 0.07          | 2.86                                    | 2.27                  | 2.79                                  | 2.64                     | 20            |
| 非甲烷总烃排放速率      | kg/h                   |               | 6.12×10 <sup>-3</sup>                   | 4.86×10 <sup>-3</sup> | 5.97×10                               | 6.05×10 <sup>-3</sup>    | 1/012         |
|                | kg/h 1.排气筒 2.排放速 3.参考杨 | 高度由受标率由标干     | 6.12×10·3<br>金单位提供;<br>流量和排放浓<br>系托方提供, | 4.86×10-3             | 5.97×10                               |                          | 物排            |

地址: 江苏省-南京市-江宁区-秣陵街道吉印大道 3008 号 l 幢三层、四层邮编: 211102 电话 (传真): 025-52723263 投诉电话: 18115131122

第 20 页 共 35 页

NJADT/JS-300/0-2021

# 南京爱迪信环境技术有限公司 检测报告

续表 (三) 有组织废气检测数据结果表

| 检测点位         |                | 危废库图      | 发气 进口     | 排        | <b>飞筒高度</b> | NOT "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|--------------|----------------|-----------|-----------|----------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 处理设施/处理方式    | 18 B           |           | - ADT     | 采        | 样日期         | 2025.05.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| aid AD1      |                | at §      | 检测条件      | CHE BINE |             | ~1 ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 参数名称         | 单位             | 检出限       | 第一次       | 3        | 第二次 (18)    | 第三次                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 烟道截面积        | m <sup>2</sup> | -5/0      | 101       | AD O     | 0.1257      | 10 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 排气中水分含量      | %              |           | 1.89      |          | 1.91        | 1.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 排气温度         | °C             |           | 22.9      | TOA      | 21.2        | 22.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 排气流速         | m/s            | -         | 11.64     |          | 11.58       | 11.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 烟气流量         | m³/h           | 自為內       | 5266      | 7        | 5239        | 5252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 标干流量         | Nm³/h          | -         | 4767 4767 |          | 4767        | 4764                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| T Property   | ×10            | EAU       | 检测结果      | 7        | EH-         | SAO'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 检测项目         | 单位             | 4A.111 WH | 题图(200    | 第一次      | DT-T        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| <b>型侧</b> 坝目 | 平位.            | 检出限       | A         | В        | C           | 均值                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 非甲烷总烃排放浓度    | mg/m³          | 0.07      | 3.85      | 3.21     | 3.92        | 3.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 非甲烷总烃排放速率    | kg/h           | T =       | 0.018     | 0.015    | 0.019       | 0.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 松加亚口         | 26.12          | JA dura   | 第二次       |          |             | Sidil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 检测项目         | 单位             | 检出限 -     | A = (1)   | В        | C           | 均值                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 非甲烷总烃排放浓度    | mg/m³          | 0.07      | 3.57      | 4.58     | 4.60        | 4.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 非甲烷总烃排放速率    | kg/h           | -         | 0.017     | 0.022    | 0.022       | 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 检测项目         | 86 PV          | 4A.11.00  |           | 第三次      |             | NEADY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 位视识日         | 单位             | 检出限       | A B C     |          | C           | 均值                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 非甲烷总烃排放浓度    | mg/m³          | 0.07      | 3.78      | 3.91     | 4.25        | 3.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 非甲烷总烃排放速率    | kg/h           | -         | 0.018     | 0.019    | 0.020       | 0.019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 备注           | 排放速率           | 医由标干流量    | 和排放浓度计算   | 得来。      |             | The state of the s |  |

地址: 江苏省-南京市-江宁区-秣陵街道吉印大道 3008 号 1 幢三层、四层邮编: 211102 电话(传真): 025-52723263 投诉电话: 18115131122

第 21 页 共 35 页

NJADT/JS-300/0-2021

#### 南京爱迪信环境技术有限公司 检测报告

续表(三)有组织废气检测数据结果表

| 检测点位           | 危废)               | 车废气二级         | 活性炭吸附出                | 出口(12#排               | 口)                    | 排气筒高度                 | 15m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------|-------------------|---------------|-----------------------|-----------------------|-----------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 处理设施/处理方式      |                   | in AO         | 二级活性炭吸                | 附                     | 567/5                 | 采样日期                  | 2025.05.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| )1             | 19310             | *\            | 检测邻                   | 件                     |                       | Mar.                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 参数名称           | 单位                | 检出限           | 第一次                   | 第二                    | 二次                    | 第三次                   | 参考标准                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 烟道截面积          | m <sup>2</sup>    | -             | 0.2827                |                       | 827                   | 题图/5                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 排气中水分含量        | %                 | 1             | 1.52                  | 1.                    | 56                    | 1.59                  | 3/61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 排气温度           | °C                | -             | 25.3                  | 26                    | 5.5                   | 27.3                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 排气流速           | m/s               | =/(1)         | 5,50                  | 6.                    | 02                    | 5.20                  | THE PARTY OF THE P |
| 烟气流量           | m³/h              | 1 = 1         | 5598 6128             |                       | 28                    | 5293                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 标干流量           | Nm³/h             | a miš         | 5081 5508             |                       | 08                    | 4765                  | while # D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3.AU           | aT.               | 1             | 检测组                   | 古果                    | Hallin.               | . P                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | 36 13             | 28.11.00      | THE                   | 第一次                   |                       | Li- titr              | 参考标准                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 检测项目           | 单位                | 检出限           | A                     | В                     | С                     | 均值                    | 多与机性                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 非甲烷总烃排放浓度      | mg/m³             | 0.07          | 1.81                  | 1.97                  | 1.52                  | 1.77                  | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 非甲烷总烃排放速率      | kg/h              |               | 9.20×10 <sup>-3</sup> | 0.010                 | 7.72×10 <sup>-3</sup> | 8.46×10 <sup>-3</sup> | Y - L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| LA MINI-SEE EN | 24 120            | LA . I . 1911 | 3/8/2                 | 第二次                   | 104                   | 均值                    | 参考标准                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 检测项目           | 单位                | 检出限           | A                     | В                     | C                     | NIE                   | 多写标准                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 非甲烷总烃排放浓度      | mg/m <sup>3</sup> | 0.07          | 1.47                  | 1.99                  | 1.80                  | 1.75                  | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 非甲烷总烃排放速率      | kg/h              |               | 8.10×10 <sup>-3</sup> | 0.011                 | 0.010                 | 0.010                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>松湖</b> 爾貝   | 26.120            | 4A (1) [7]    | AD1                   | 第三次                   | 620                   | Ma Mi                 | €A =K I= WE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 检测项目           | 单位                | 检出限           | A                     | В                     | С                     | 均值                    | 参考标准                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 非甲烷总烃排放浓度      | mg/m³             | 0.07          | 1.78                  | 1.76                  | 1.88                  | 1.81                  | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 非甲烷总烃排放速率      | kg/h              |               | 8.48×10 <sup>-3</sup> | 8.39×10 <sup>-3</sup> | 0.010                 | 9.42×10 <sup>-3</sup> | 1/2/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 备注             | 2.排放速<br>3.参考材    | 率由标干流         |                       |                       |                       | .烯工业污染                | 物排放标准                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

地址: 江苏省-南京市-江宁区-秣陵街道吉印大道 3008 号 1 幢三层、四层

邮编: 211102 电话(传真): 025-52723263 投诉电话: 18115131122

第 22 页 共 35 页

NJADT/JS-300/0-2021

#### 南京爱迪信环境技术有限公司 检测报告

续表(三)有组织废气检测数据结果表

| 检测点位        |                | 危废库废                                  | 5气 进口     | 排气       | 筒高度   | TOA        |  |
|-------------|----------------|---------------------------------------|-----------|----------|-------|------------|--|
| 处理设施/处理方式   | F2(01)         | -                                     | TOA SIL   | 采札       | ¥日期   | 2025.05.27 |  |
| ZIGHE ADT   |                |                                       | 检测条件      | UA EIMIS |       | ~T         |  |
| 参数名称        | 单位             | 检出限                                   | 第一次       | 第        | 二次。   | 第三次        |  |
| 烟道截面积       | m <sup>2</sup> | -5 <sup>N</sup>                       | 0.1257    |          |       | 强吧片        |  |
| 排气中水分含量     | %              | -                                     | 1.85      | 1        | .79   | 1.85       |  |
| 排气温度        | °C             | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 24.1      | 2        | 5.0   | 24.7       |  |
| 排气流速        | m/s            | -                                     | 11.64     | 12       | 2.00  | 11.67      |  |
| 烟气流量        | m³/h           | 地長戶                                   | 5266      | 5.       | 429   | 5279       |  |
| 标干流量        | Nm³/h          | -                                     | 4738 4885 |          |       | 4746       |  |
| T. T.       |                | EAU"                                  | 检测结果      | 192      | 159   | EPO T      |  |
| 检测项目        | 单位             | 检出限                                   |           | 第一次      | T     | Lin htt    |  |
| EK BSP X E  |                | THE HIPK                              | A         | В        | C     | 均值         |  |
| 非甲烷总烃排放浓度   | mg/m³          | 0.07                                  | 3.68      | 4.07     | 4.13  | 3.96       |  |
| 非甲烷总烃排放速率   | kg/h           | 1 -                                   | 0.017     | 0.019    | 0.020 | 0.019      |  |
| 检测项目        | 单位             | 检出限                                   | , AU      | 第二次      | 第二次   |            |  |
| 1200-761    | PO .           | TW. ITT MX                            | A 120     | В        | C     | 均值         |  |
| 非甲烷总烃排放浓度   | mg/m³          | 0.07                                  | 3.65      | 3.96     | 4.06  | 3.89       |  |
| 非甲烷总烃排放速率   | kg/h           | -                                     | 0.017     | 0.019    | 0.020 | 0.019      |  |
| 检测项目        | 单位             | 检出限                                   |           | 第三次      | 10    | 18 A 0     |  |
| 194.007-9人口 | 4-1/           | TML LLI PIR                           | A         | В        | C, "  | 均值         |  |
| 非甲烷总烃排放浓度   | mg/m³          | 0.07                                  | 3.78      | 4.25     | 3.91  | 3.98       |  |
| 非甲烷总烃排放速率   | kg/h           | -                                     | 0.018     | 0.020    | 0.019 | 0.019      |  |
| 备注          | 排放速率           | 由标干流量                                 | 和排放浓度计算   | 得来。      |       |            |  |

地址: 江苏省-南京市-江宁区-秣陵街道吉印大道 3008 号 1 幢三层、四层邮编: 211102 电话(传真): 025-52723263 投诉电话: 18115131122

第 23 页 共 35 页

NJADT/JS-300/0-2021

#### 南京爱迪信环境技术有限公司 检测报告

续表(三)有组织废气检测数据结果表

| 检测点位         | 危废                | 库废气二级       | 活性炭吸附品                | 出口(12#排               | 口)                    | 排气简高度                 | 15m           |
|--------------|-------------------|-------------|-----------------------|-----------------------|-----------------------|-----------------------|---------------|
| 处理设施/处理方式    |                   | (E KO       | 二级活性炭吸                | 附                     |                       | 采样日期                  | 2025.05.27    |
| )            | 1980              | 1           | 检测分                   | <b>条件</b>             |                       | 型(四)                  |               |
| 参数名称         | 单位                | 检出限         | 第一次                   | 第二                    | 二次                    | 第三次                   | 参考标准          |
| 烟道截面积        | m <sup>2</sup>    | -           | L L (0)               | 0.2                   | 827                   | 通過一                   | -             |
| 排气中水分含量      | %                 | 🦎           | 1.54                  | 1.54 1.59             |                       | 1.63                  | (A)           |
| 排气温度         | °C                | -           | 26.5                  | 27                    | 1.3                   | 28.0                  | =             |
| 排气流速         | m/s               | =\B\        | 5.53                  | 5.                    | 55                    | 5.35                  | ALLEYS IT     |
| 烟气流量         | m³/h              |             | 5629 5649             |                       | 49                    | 5446                  | _             |
| 标干流量         | Nm³/h             | J.CTI       | 5085                  | 50                    | 4893                  | alia AO               |               |
| A Property   | ot.               |             | 检测组                   | 古果                    |                       |                       |               |
| LA NOLVET ET | 34.71             | LA district |                       | 第一次                   | 是由  一                 | 1.L. febr             | 参考标准          |
| 检测项目         | 单位                | 检出限         | A                     | В                     | С                     | 均值                    | 多为你性          |
| 非甲烷总烃排放浓度    | mg/m³             | 0.07        | 1.35                  | 1.77                  | 1.29                  | 1.47                  | 20            |
| 非甲烷总烃排放速率    | kg/h              | ラアビ         | 6.86×10 <sup>-3</sup> | 9.00×10 <sup>-3</sup> | 6.56×10 <sup>-3</sup> | 6.71×10 <sup>-3</sup> |               |
| 松测项目         | 单位                | 4A 111 PE2  | 第二次。《〇                |                       |                       | 均值                    | 会长标准          |
| 检测项目         | 平位                | 检出限         | A                     | В                     | C                     | 初恒                    | 参考标准          |
| 非甲烷总烃排放浓度    | mg/m <sup>3</sup> | 0.07        | 1.52                  | 1.88                  | 1.72                  | 1.71                  | 20            |
| 非甲烷总烃排放速率    | kg/h              | -           | 7.74×10 <sup>-3</sup> | 0.010                 | 8.75×10 <sup>-3</sup> | 8.25×10 <sup>-3</sup> | -             |
| A SHEET EI   | 26.12             | JA (I) PEI  | 10                    | 第三次                   | 19:21/1               | P                     | 45 to 1 = 50. |
| 检测项目         | 单位                | 检出限         | A                     | В                     | С                     | 均值                    | 参考标准          |
| 非甲烷总烃排放浓度    | mg/m³             | 0.07        | 1.80                  | 1.95                  | 1.69                  | 1.81                  | 20            |
| 非甲烷总烃排放速率    | kg/h              | 1912        | 8.81×10 <sup>-3</sup> | 9.54×10 <sup>-3</sup> | 8.27×10 <sup>-3</sup> | 8.54×10 <sup>-3</sup> | 1/2, -        |
| 备注           | 2.排放速<br>3.参考材    | 率由标干流       |                       |                       |                       | 烯工业污染                 | 物排放标准》        |

地址: 江苏省-南京市-江宁区-秣陵街道吉印大道 3008 号 1 幢三层、四层邮编: 211102 电话 (传真): 025-52723263 投诉电话: 18115131122

第 24 页 共 35 页

NJADT/JS-300/0-2021

#### 南京爱迪信环境技术有限公司 检测报告

| 采木         | 羊日期        |       |        | √ "   | 20    | 25.05.26 |        |         |            |
|------------|------------|-------|--------|-------|-------|----------|--------|---------|------------|
| 1          |            | 看     | 個同一    |       | 检测条件  |          | - 1    | 18/0    |            |
| 参数         | 故名称        | 单位    | 检出限    | 第一    | 欠     | 第二次      | 9      | 第三次     | 参考标准       |
| 气象         | 风速         | m/s   | PU I   | 1.2~2 | .1    | 1.2~2.1  | 1      | .2~2.1  | _          |
|            | 风向         | -     | (-)    | 南风    |       | 南风       |        | 南风      |            |
| 参数         | 气温         | °C    | 07     | 26.2  |       | 25.4     | ALC:   | 22.2    | -          |
|            | 气压         | kPa   | 1-5    | 101.5 | 7     | 101.60   | 1      | 01.64   | RISAD      |
| PAL        |            | 0     | 7      | 检测结果  | 果(非甲烷 | 总烃)      | ~ 10   | 1       |            |
| 检测         | N点位        | 单位    | 检出限    | A     | В     | С        | D      | 均值      | 参考标准       |
| DI         | 第一次        | mg/m³ | 0.07   | 0.55  | 0.53  | 0.58     | 0.67   | 0.58    |            |
| GI 上<br>风向 | 第二次        | mg/m³ | 0.07   | 0,62  | 0.68  | 0.54     | 0.55   | 0.60    | 4          |
|            | 第三次        | mg/m³ | 0.07   | 0.64  | 0.57  | 0.67     | 0.61   | 0.62    |            |
| 检测         | 別点位        | 单位    | 检出限    | A     | В     | C        | D      | 均值      | 参考标准       |
| T          | 第一次        | mg/m³ | 0.07   | 1.09  | 1.18  | 1.12     | 1.06   | 1.11    | 4          |
| G2下<br>风向  | 第二次        | mg/m³ | 0.07   | 1.06  | 1.14  | 1.05     | 1.16   | 1.10    |            |
| Wild       | 第三次        | mg/m³ | 0.07   | 1.10  | 1.15  | 1.17     | 1.13   | 1.14    |            |
| 检测         | 別点位        | 单位    | 检出限    | A A   | В     | C        | D      | 均值      | 参考标准       |
|            | 第一次        | mg/m³ | 0.07   | 1.19  | 1.14  | 1.16     | 1.22   | 1.18    |            |
| G3下<br>风向  | 第二次        | mg/m³ | 0.07   | 1.14  | 1.25  | 1.17     | 1.21   | 1.19    | 4          |
| WILL       | 第三次        | mg/m³ | 0.07   | 1.18  | 1.21  | 1.26     | 1.15   | 1.20    |            |
| 检测         | <b></b> 点位 | 单位    | 检出限    | Ā     | В     | С        | D      | 均值      | 参考标准       |
| 7          | 第一次        | mg/m³ | 0.07   | 1.03  | 1.08  | 1.07     | 1.13   | 1.08    | -31        |
| G4下<br>风向  | 第二次        | mg/m³ | 0.07   | 1.07  | 1.03  | 1.15     | 1.10   | 1.09    | 4          |
| MIN        | 第三次        | mg/m³ | 0.07   | 1.09  | 1.12  | 1.02     | 1.06   | 1.07    |            |
| 名          | 注AO        | 参考标准  | i: 由委托 | 方提供,参 | 考《化学工 | 业挥发性有权   | 几物排放标准 | 能》(DB32 | /3151-2016 |

地址: 江苏省-南京市-江宁区-秣陵街道吉印大道 3008 号 1 幢三层、四层 邮编: 211102 电话(传真): 025-52723263 投诉电话: 18115131122

第 25 页 共 35 页

#### 南京爱迪信环境技术有限公司 检测报告

续表(四)无组织废气检测数据结果表

| 采村         | 自期     | LOT.              |         |       | 20     | )25.05.27 | FOA     |         |                    |
|------------|--------|-------------------|---------|-------|--------|-----------|---------|---------|--------------------|
|            | \$ (B) |                   | 1.m(È.A | DT    | 检测条件   |           | P       | القائد  | $\mathcal{D}_f$    |
| 参数名称       |        | 单位                | 检出限     | 第一次   |        | 第二次       | 第       | 三次      | 参考标准               |
|            | 风速     | m/s               | 7.5     | 1.6~2 | 2.4    | 1.6~2.4   | 1.0     | 5~2.4   | -                  |
| 气象         | 风向     | 751               | 1/67    | 南原    | 4 10   | 南风        | p       | 有风      |                    |
| 参数         | 气温     | °C                |         | 27.   | 2      | 25.6      | 2       | 23.4    | Name of the second |
| 12         | 气压     | kPa               | PE      | 101.  | 53     | 101.57    | S/(2/10 | 01.60   |                    |
| 1 6        | DT     |                   | , , j   | 检测结   | 果(非甲烷  | 总烃)       |         |         |                    |
| 检测         | 則点位    | 单位                | 检出限     | A     | В      | C         | D       | 均值      | 参考标准               |
| เก         | 第一次    | mg/m³             | 0.07    | 0.58  | 0.52   | 0.67      | 0.61    | 0.60    | BAU                |
| G1上<br>风向  | 第二次    | mg/m³             | 0.07    | 0.69  | 0.60   | 0.63      | 0.55    | 0.62    | 4                  |
| MINI       | 第三次    | mg/m³             | 0.07    | 0.67  | 0.54   | 0.62      | 0.68    | 0.63    | 101                |
| 检测         | 別点位    | 单位                | 检出限     | A     | В      | C         | D       | 均值      | 参考标准               |
|            | 第一次    | mg/m³             | 0.07    | 1.17  | 1.11   | 1.07      | 1.14    | 1.12    | 4                  |
| G2下<br>风向  | 第二次    | mg/m³             | 0.07    | 1.10  | 1.13   | 1.03      | 1.15    | 1.10    |                    |
| Jordina.   | 第三次    | mg/m³             | 0.07    | 1.13  | 1.18   | 1.09      | 1.11    | 1.13    |                    |
| 检测         | 可点位    | 单位                | 检出限     | A     | В      | С         | D       | 均值      | 参考标准               |
| 00 T       | 第一次    | mg/m³             | 0.07    | 1.22  | 1.16   | 1.20      | 1.25    | 1.21    | Em.                |
| G3 下<br>风向 | 第二次    | mg/m³             | 0.07    | 1.19  | 1.22   | 1.18      | 1.14    | 1.18    | 4                  |
| PAIN       | 第三次    | mg/m³             | 0.07    | 1.18  | 1.20   | 1.27      | 1.24    | 1.22    | Male Wr            |
| 检测         | 可点位    | 单位                | 检出限     | Α     | В      | С         | D O     | 均值      | 参考标》               |
|            | 第一次    | mg/m <sup>3</sup> | 0.07    | 1.27  | 1.20   | 1.34      | 1.31    | 1.28    | PD,                |
| G4下<br>风向  | 第二次    | mg/m³             | 0.07    | 1.33  | 1.28   | 1.36      | 1.22    | 1.30    | 4                  |
| William    | 第三次    | mg/m <sup>3</sup> | 0.07    | 1.34  | 1.21   | 1.30      | 1.24    | 1.27    | JOT !              |
| 名          | 各注     | 参考标准              | 惟: 由委托  | 方提供,参 | *考《化学』 | 业挥发性有权    | 几物排放标准  | Ě》(DB32 | 2/3151-2016        |

地址: 江苏省-南京市-江宁区-秣陵街道吉印大道 3008 号 1 幢三层、四层 邮编: 211102 电话 (传真): 025-52723263 投诉电话: 18115131122

第 26 页 共 35 页

NJADT/JS-300/0-2021

### 南京爱迪信环境技术有限公司 检测报告

续表(四)无组织废气检测数据结果表

| 采样日期      |        |                   | <u>. 17</u> | 20           | 25.05.26 |           |            |
|-----------|--------|-------------------|-------------|--------------|----------|-----------|------------|
| 参数        | 名称     | <b>4</b> (1) [2]  |             | 检            | 边测条件     | 美俚(0)     |            |
|           |        | 单位                | 检出限         | 第一次          | 第二次      | 第三次       | 参考标准       |
|           | 风速     | m/s               | T = "       | 1.2~2.1      | 1.2~2.1  | 1.2~2.1   | A          |
| 气象        | 风向     | 0/2               | -           | 南风           | 南风       | 南风        | To Table   |
| 参数        | 气温     | °C                |             | 26.2         | 25,4     | 22.2      |            |
| ile.      | 气压     | kPa               | -           | 101.57       | 101.60   | 101.64    | -          |
|           | 712    |                   | -unlin P    | 检测结果         | The same | VIII III. | ical E P.D |
| 检测)       | 新目     |                   | 13/10/      |              | 氰乙烯      | _ T       |            |
| 100,004   | - h    | 单位                | 检出限         | 第一次          | 第二次      | 第三次       | 参考标准       |
| GI 上      | 风向     | mg/m <sup>3</sup> | 0.08        | ND           | ND       | ND        | , AU       |
| G2 下      | 风向     | mg/m³             | 0.08        | ND           | ND       | ND        | 0.15       |
| G3 下      | 风向     | mg/m³             | 0.08        | ND           | ND       | ND        |            |
| G4 下      | 风向     | mg/m <sup>3</sup> | 0.08        | ND           | ND       | ND        |            |
|           | 70,    |                   |             | 101/2        | ≥ NDT    |           | \$2V       |
| 采样        | 日期     |                   | DT          | 202          | 25.05.27 | - NO      | N .        |
| 参数:       | 名称     | 161/01            |             | 检            | 测条件      | SHP'      |            |
| 参数名称      |        | 单位                | 检出限         | 第一次          | 第二次      | 第三次       | 参考标准       |
|           | 风速     | m/s               | -           | 1.6~2.4      | 1.6~2.4  | 1.6~2.4   | -          |
| 气象        | 风向     | 1/2 -             | -12         | 南风           | 南风       | 南风        | - A 1      |
| 参数        | 气温     | °C                | 7,240       | 27.2         | 25.6     | 23.4      | 1-1-       |
|           | 气压     | kPa               | -           | 101.53       | 101.57   | 101.60    |            |
|           | Mar.   |                   | MA Aller    | 检测结果         |          |           | 18AU       |
| 检测工       | Wi El  | 7                 |             | Lantille Mil | 瓦乙烯      | _1 7      |            |
| JW 1953 × | X II   | 单位                | 检出限         | 第一次          | 第二次      | 第三次       | 参考标准       |
| G1上       | 风向     | mg/m³             | 0.08        | ND           | ND       | ND        |            |
| G2 下风向    |        | mg/m³             | 0.08        | ND           | ND       | ND        | 0.15       |
| G3 下      | G3 下风向 |                   | 0.08        | ND           | ND       | ND        | 0.15       |
| G4 下      | 风向     | mg/m³             | 0.08        | ND           | ND       | ND        |            |
| 备注        | Ė      |                   | : 由委托方      | 提供,参考《烧碱     | 、聚氯乙烯工业  | 业污染物排放标   | 准》         |

地址: 江苏省-南京市-江宁区-秣陵街道吉印大道 3008 号 1 幢三层、四层邮编: 211102 电话(传真): 025-52723263 投诉电话: 18115131122

第 27 页 共 35 页

NJADT/JS-300/0-2021

#### 南京爱迪信环境技术有限公司 检测报告

续表(四)无组织废气检测数据结果表

| 采样日期 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1     | THE VI                                                                                    | 20                                                                                                                                                   | 25.05.26               | 3 P.O.V                                                                                                                         |                                                                                                                                                                                                                                        | οſ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | <b>A</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IF AU | 检测                                                                                        | <b>小条件</b>                                                                                                                                           |                        |                                                                                                                                 |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3称   | 单位                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 检出限   | 第一                                                                                        | 欠                                                                                                                                                    | 第二次                    | 第                                                                                                                               | 三次                                                                                                                                                                                                                                     | 参考标准                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 风速   | m/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _ = 4 | 1.2~2                                                                                     | .1                                                                                                                                                   | 1.2~2.1                | 1.                                                                                                                              | 2~2.1                                                                                                                                                                                                                                  | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 风向   | (EA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -     | 南风                                                                                        | . 7                                                                                                                                                  | 南风 22.2                | 100                                                                                                                             | 有风                                                                                                                                                                                                                                     | nent A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 气温   | °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 700   | 25.4                                                                                      | 海鱼                                                                                                                                                   |                        | a La                                                                                                                            | 20.8                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 和压   | kPa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | 101.60                                                                                    |                                                                                                                                                      | 101.64                 | 1                                                                                                                               | 101.67                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 前信利  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 杜     | <b>企测结果</b> (                                                                             | 非甲烷总统                                                                                                                                                | 经) (1)                 | BAU'                                                                                                                            |                                                                                                                                                                                                                                        | ADT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 点位   | 单位                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 检出限   | A                                                                                         | В                                                                                                                                                    | С                      | D                                                                                                                               | 均值                                                                                                                                                                                                                                     | 参考标准                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 第一次  | mg/m³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.07  | 1.40                                                                                      | 1.49                                                                                                                                                 | 1.43                   | 1.51                                                                                                                            | 1.46                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 第二次  | mg/m³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.07  | 1.43                                                                                      | 1.54                                                                                                                                                 | 1.45                   | 1.47                                                                                                                            | 1.47                                                                                                                                                                                                                                   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 第三次  | mg/m³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.07  | 1.46                                                                                      | 1.44                                                                                                                                                 | 1.49                   | 1.52                                                                                                                            | 1.48                                                                                                                                                                                                                                   | \$\ta\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 点位   | 单位                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 检出限   | A                                                                                         | В                                                                                                                                                    | С                      | D                                                                                                                               | 均值                                                                                                                                                                                                                                     | 参考标准                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 第一次  | mg/m³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.07  | 1.62                                                                                      | 1.57                                                                                                                                                 | 1.66                   | 1,55                                                                                                                            | 1.60                                                                                                                                                                                                                                   | (E/C-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 第二次  | mg/m³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.07  | 1.59                                                                                      | 1.63                                                                                                                                                 | 1.54                   | 1.57                                                                                                                            | 1.58                                                                                                                                                                                                                                   | A 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 第三次  | mg/m³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.07  | 1.53                                                                                      | 1.64                                                                                                                                                 | 1.60                   | 1.67                                                                                                                            | 1.61                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | <ul><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li><li>(本)</li></ul> | 対 単位  | 第一次 mg/m³ 0.07 第二次 mg/m³ 0.07 | 検測   検測   第一次   A   A   第三次   mg/m <sup>3</sup>   0.07   1.62   第三次   mg/m <sup>3</sup>   0.07   1.62   第三次   mg/m <sup>3</sup>   0.07   1.59   1.59 | 検測条件   検出限   第一次   (A) | 検測条件   検出限   第一次   第二次   八速   m/s   -   1.2~2.1   1.2~2.1   1.2~2.1   1.2~2.1   1.2~2.1   1.2~2.1   1.2~2.1   1.2~2.1   1.2~2.1 | 控制条件   控出限   第一次   第二次   第二次   第二次   第一次   第二次   第二次   第二次   第二次   第二次   第二次   第二次   mg/m³   0.07   1.62   1.57   1.66   1.55   第二次   mg/m³   0.07   1.62   1.57   1.66   1.55   第二次   mg/m³   0.07   1.59   1.63   1.54   1.57   1.57 | 検測条件   単位   検出限   第一次   第二次   第三次  <br>  风速   m/s   -   1.2~2.1   1.2~2.1   1.2~2.1   1.2~2.1   1.2~2.1   1.2~2.1   1.2~2.1   1.2~2.1   1.2~2.1   1.2~2.1   1.2~2.1   1.2~2.1   1.2~2.1   1.2~2.1   1.2~2.1   1.2~2.1   1.2~2.1   1.2~2.1   1.2~2.1   1.2~2.1   1.2~2.1   1.2~2.1   1.2~2.1   1.2~2.1   1.2~2.1   1.2~2.1   1.2~2.1   1.2~2.1   1.2~2.2   20.8   1.2~2   20.8   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2   1.2~2~2   1.2~2   1.2~2   1.2~2~2   1.2~2~2   1.2~2~2   1.2~2~2   1.2~2~2   1.2~2~2   1.2~2~2~2   1.2~2~2~2~2~2~2~2~2~2~2~2~2~2~2~2~2~2~2~ |

地址: 江苏省-南京市-江宁区-秣陵街道吉印大道 3008 号 1 幢三层、四层邮编: 211102 电话(传真): 025-52723263 投诉电话: 18115131122

第 28 页 共 35 页

NJADT/JS-300/0-2021

#### 南京爱迪信环境技术有限公司 检测报告

续表(四)无组织废气检测数据结果表

|      | 1000000                       |                                                                                                                                                                                                                        |                                                                                                                                                        |                        |          |                                                                                      | walls A'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                        |
|------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
|      |                               |                                                                                                                                                                                                                        | 人                                                                                                                                                      | 刚条件                    | until AD | 1                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 美地                                                                                                                     |
| 称    | 单位                            | 检出限                                                                                                                                                                                                                    | 第一                                                                                                                                                     | er.                    | 第二次      | 第                                                                                    | 三次                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 参考标准                                                                                                                   |
| 风速   | m/s                           | - 12                                                                                                                                                                                                                   | 1.6~2                                                                                                                                                  | .4                     | 1.6~2.4  | 1.                                                                                   | .6~2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | F                                                                                                                      |
| 风向   | -                             | / <u>E</u>                                                                                                                                                                                                             | 南区                                                                                                                                                     | (                      | 南风       |                                                                                      | 南风 23.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                        |
| 气温   | °C                            | - 1                                                                                                                                                                                                                    | 27.2                                                                                                                                                   |                        |          | (BAD                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                        |
| 气压   | kPa                           | 7/65/                                                                                                                                                                                                                  | 101.53                                                                                                                                                 |                        | 101.58   | 101.60                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                      |
| ile. | i di di                       | BAD A                                                                                                                                                                                                                  | <b>企测结果</b> (                                                                                                                                          | 非甲烷总                   | 烃)       |                                                                                      | A BIDIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D.                                                                                                                     |
| 位    | 单位                            | 检出限                                                                                                                                                                                                                    | A                                                                                                                                                      | В                      | C.A.     | D                                                                                    | 均值                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 参考标准                                                                                                                   |
| 第一次  | mg/m³                         | 0.07                                                                                                                                                                                                                   | 1.64                                                                                                                                                   | 1.60                   | 1.67     | 1.57                                                                                 | 1.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | E181                                                                                                                   |
| 第二次  | mg/m³                         | 0.07                                                                                                                                                                                                                   | 1.69                                                                                                                                                   | 1.59                   | 1.66     | 1.62                                                                                 | 1.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6                                                                                                                      |
| 第三次  | mg/m³                         | 0.07                                                                                                                                                                                                                   | 1.70                                                                                                                                                   | 1.58                   | 1.64     | 1.67                                                                                 | 1.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                        |
| 位    | 单位                            | 检出限                                                                                                                                                                                                                    | OÃ                                                                                                                                                     | В                      | c        | D                                                                                    | 均值                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 参考标准                                                                                                                   |
| 第一次  | mg/m³                         | 0.07                                                                                                                                                                                                                   | 1.57                                                                                                                                                   | 1.51                   | 1.54     | 1.62                                                                                 | 1.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 01                                                                                                                     |
| 第二次  | mg/m³                         | 0.07                                                                                                                                                                                                                   | 1.57                                                                                                                                                   | 1.50                   | 1.61     | 1.53                                                                                 | 1.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6                                                                                                                      |
| 第三次  | mg/m <sup>3</sup>             | 0.07                                                                                                                                                                                                                   | 1.56                                                                                                                                                   | 1.53                   | 1.58     | 1,64                                                                                 | 1.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                        |
|      | 第二次<br>第三次<br>位<br>第一次<br>第二次 | 风速     m/s       风向     -       气温     °C       气压     kPa       (位     単位       第二次     mg/m³       第三次     mg/m³       第一次     mg/m³       第二次     mg/m³       第三次     mg/m³       第三次     mg/m³       第三次     mg/m³ | 风速 m/s −  风向 −  气温 °C −  气温 °C −  气压 kPa −  粒 位 单位 检出限  第一次 mg/m³ 0.07  第三次 mg/m³ 0.07 | 第一次 単位 检出限 第一 1.6~2 内向 | 风速 m/s   | 単位   检出限   第一次   第二次  <br>  风速   m/s   -   1.6~2.4   1.6~2.4   1.6~2.4  <br>  风向   - | 第一次   第二次   mg/m³   0.07   1.57   1.51   1.54   1.62   第二次   mg/m³   0.07   1.57   1.50   1.61   1.53   第三次   mg/m³   0.07   1.56   1.53   1.58   1.64   1.60   1.67   1.57   1.50   1.61   1.53   1.58   1.64   1.60   1.67   1.57   1.50   1.61   1.53   1.58   1.64   1.65   1.65   1.53   1.58   1.64   1.65   1.53   1.58   1.64   1.65   1.53   1.58   1.64   1.65   1.53   1.58   1.64   1.65   1.53   1.58   1.64   1.65   1.53   1.58   1.64   1.65   1.53   1.58   1.64   1.65   1.53   1.58   1.64   1.65   1.53   1.58   1.64   1.65   1.53   1.58   1.64   1.65   1.53   1.58   1.64   1.65   1.53   1.58   1.64   1.65   1.53   1.58   1.64   1.65   1.53   1.58   1.64   1.65   1.53   1.58   1.64   1.65   1.53   1.58   1.64   1.65   1.53   1.58   1.64   1.65   1.53   1.58   1.64   1.65   1.53   1.58   1.64   1.65   1.53   1.58   1.64   1.65   1.53   1.58   1.64   1.65   1.53   1.58   1.64   1.65   1.53   1.58   1.64   1.65   1.53   1.58   1.64   1.65   1.53   1.58   1.64   1.65   1.53   1.58   1.64   1.65   1.53   1.58   1.64   1.65   1.53   1.58   1.64   1.65   1.53   1.58   1.64   1.65   1.53   1.58   1.64   1.65   1.53   1.58   1.64   1.65   1.53   1.58   1.64   1.65   1.53   1.58   1.64   1.65   1.53   1.58   1.64   1.65   1.53   1.58   1.64   1.65   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55   1.55 | 第一次   第二次   第三次   第三次   第三次   第三次   図速   m/s   -   1.6~2.4   1.6~2.4   1.6~2.4   1.6~2.4   1.6~2.4   1.6~2.4   1.6~2.4 |

地址: 江苏省-南京市-江宁区-秣陵街道吉印大道 3008 号 1 幢三层、四层 邮编: 211102 电话(传真): 025-52723263 投诉电话: 18115131122

第 29 页 共 35 页

NJADT/JS-300/0-2021

# 南京爱迪信环境技术有限公司 检测报告

表(五)噪声检测数据结果表

| 监测日期 |           | 2025.05.26       | 环境          | 条件            | 晴;风速: 0.9~1.4m/s  |               |  |
|------|-----------|------------------|-------------|---------------|-------------------|---------------|--|
| T    |           | ele AU           |             |               | 运转状态              |               |  |
| 主    | 要噪声源情况    | 车间工段名称           | 设备名称        | 、型号<br>AD     | 开(台)              | 停 (台)         |  |
|      | telo.     | āAU'             |             | 见附件           | 四间点               |               |  |
| 测点   | AOT TOA   | 18/19/           | 昼           | ii DT         | 夜                 | 间             |  |
| 编号   | 測点位置      | 主要声源             | 监测时段        | 测量值<br>dB (A) | 监测时段              | 测量值<br>dB (A) |  |
| ▲N2  | 西厂界外 1m 处 | 生产噪声             | 15:19-15:24 | 59.2          | 22:17-22:22       | 53.8          |  |
| ▲N1  | 北厂界外 1m 处 | 生产噪声             | 15:43-15:48 | 60.7          | 22:37-22:42       | 54.5          |  |
| ▲N3  | 南厂界外 1m 处 | 生产噪声             | 16:01-16:16 | 61.6          | 22:48-22:53       | 54.3          |  |
|      | 参考标准      | 101              | _           | 65            | - P               | 55            |  |
| 70   |           | \$1EH (-1/1)     | TOA         |               | (A)               |               |  |
| 8    | 监测日期      | 2025.05.27       | 环境条件        |               | 晴; 风速; 1.1~1.6m/s |               |  |
|      | AV.       | e de la constant | I CA        | 1             | 运转状态              |               |  |
| 金/(主 | 要噪声源情况    | 车间工段名称           | 设备名称、型号     |               | 开(台)              | 停 (台)         |  |
|      |           | an(              | ADT TO      | 见附件           | 野(田)(口)           | _ 101         |  |
| 測点   |           | 7                | 昼           | 间             | 夜间                |               |  |
| 编号   | 测点位置      | 主要声源             | 监测时段        | 测量值<br>dB(A)  | 监测时段              | 測量值<br>dB(A)  |  |
| ▲N2  | 西厂界外 1m 处 | 生产噪声             | 10:50-10:55 | 63.8          | 22:00-22:05       | 54.1          |  |
| ▲N1  | 北厂界外 Im 处 | 生产噪声             | 12:28-12:33 | 59.4          | 22:12-22:17       | 53.4          |  |
| ▲N3  | 南厂界外 1m 处 | 生产噪声             | 12:40-12:45 | 63.5          | 22:23-22:28       | 54.7          |  |
|      | 参考标准      |                  |             | 65            | 1                 | 55            |  |

地址: 江苏省-南京市-江宁区-秣陵街道吉印大道 3008 号 1 幢三层、四层邮编: 211102 电话(传真): 025-52723263 投诉电话: 18115131122

第 30 页 共 35 页

NJADT/JS-300/0-2021

### 南京爱迪信环境技术有限公司 检测报告

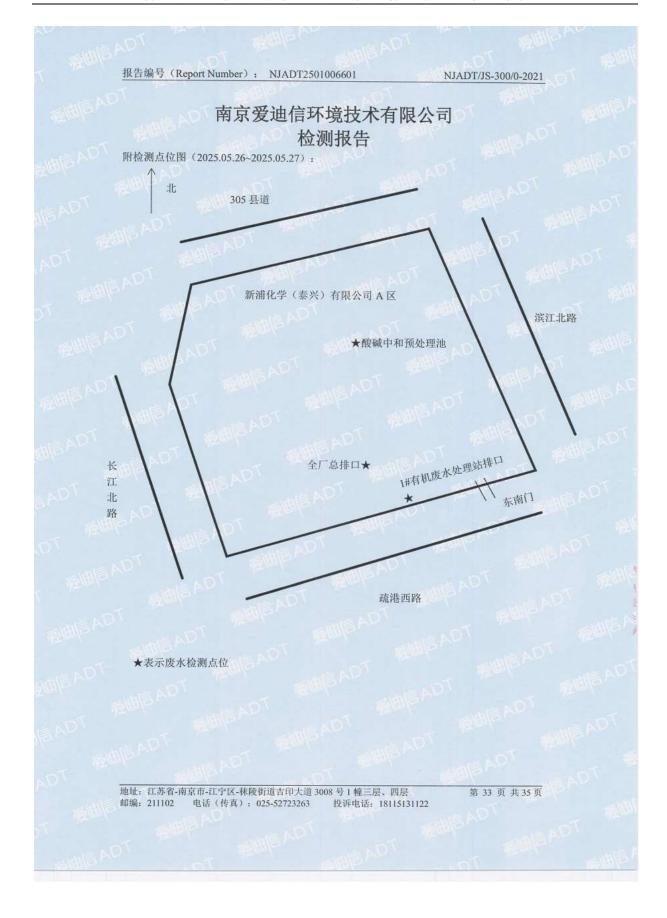
表 (六)检测方法及仪器

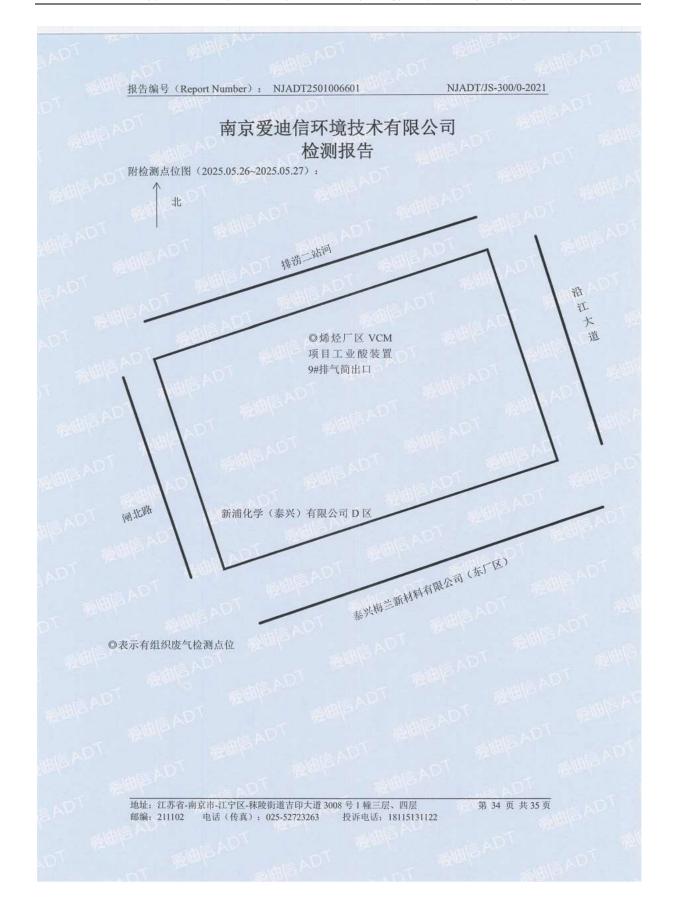
| 检测类别                | 检测项目                                       | 检测方法                                                                                                                                                                                  | 仪器名称                         | 仪器型号                 | 仪器编号        |
|---------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------|-------------|
|                     | pH值                                        | 水质 pH 值的测定 电极法<br>HJ 1147-2020                                                                                                                                                        | SX751型 pH/ORP/电<br>导率/溶解氧测量仪 | SX751                | NJADT-X-H50 |
| <sub>isz</sub> itt) | 化学需氧量                                      | 水质 化学需氧量的测定<br>重铬酸盐法 HJ 828-2017                                                                                                                                                      | 滴定管                          | 50ml                 | NJADT-S-576 |
|                     | 悬浮物                                        | 水质 悬浮物的测定 重量<br>法 GB/T 11901-89                                                                                                                                                       | 天平 (万分之一)                    | ME204E               | NJADT-S-374 |
|                     | 氨氮                                         | 水质 氨氮的测定 纳氏试剂分<br>光光度法 HJ 535-2009                                                                                                                                                    | 紫外分光光度计                      | UV8000               | NJADT-S-367 |
| 废水                  | 总磷                                         | 水质 总磷的测定 钼酸铵分光<br>光度法 GB/T 11893-1989                                                                                                                                                 | 紫外分光光度计                      | UV8000               | NJADT-S-367 |
|                     | 氯离子                                        | 水质 无机阴离子 (F·、Cl·、<br>NO <sup>2-</sup> 、Br、NO <sup>3-</sup> 、PO <sub>4</sub> <sup>3-</sup> 、SO <sub>3</sub> <sup>2-</sup> 、<br>SO <sub>4</sub> <sup>2-</sup> ) 的测定 离子色谱法<br>HJ 84-2016 | 离子色谱仪                        | CIC-D100             | NJADT-S-468 |
| 石油类                 | 水质 石油类和动植物油类的<br>测定 红外分光光度法<br>HJ 637-2018 | 红外测油仪                                                                                                                                                                                 | OIL460                       | NJADT-S-350          |             |
| <b>EU</b>           | EAD'                                       | 固定污染源废气 总烃、甲烷和<br>非甲烷总烃的测定 气相色谱<br>法 HJ 38-2017                                                                                                                                       | 气相色谱仪                        | GC9790II双FID         | NJADT-S-377 |
|                     | 非甲烷 总烃                                     |                                                                                                                                                                                       | 真空箱采样器                       | MH3051               | NJADT-X-G39 |
|                     |                                            |                                                                                                                                                                                       | 真空箱采样器                       | MH3051               | NJADT-X-G30 |
|                     |                                            |                                                                                                                                                                                       | 真空箱采样器                       | MH3051               | NJADT-X-G3  |
| SOUTH STATE         |                                            |                                                                                                                                                                                       | 真空箱采样器                       | MH3051               | NJADT-X-G2: |
|                     | 11/22                                      | I T                                                                                                                                                                                   | 真空箱采样器                       | MH3051               | NJADT-X-G2  |
| a ila               | 氯乙烯                                        | 固定污染源排气中氯乙烯的测定 气相色谱法 HJ/T 34-1999                                                                                                                                                     | 气相色谱仪                        | GC9790plus           | NJADT-S-376 |
| 组织废气                | 超曲信                                        | ADT ADT                                                                                                                                                                               | 大流量烟尘(气)测试<br>仪              | YQ3000-D 型<br>(20 代) | NJADT-X-D3  |
| SHEND C             | JA SEL                                     | FET (2-2)二分九公司十世 (4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-                                                                                                                              | 大流量烟尘(气)测<br>试仪(20代)         | YQ3000-D 型<br>(20 代) | NJADT-X-D3  |
|                     | 排气温度、排气温度、排气温度、排气温度                        |                                                                                                                                                                                       | 大流量烟尘(气)测<br>试仪              | YQ3000-D             | NJADT-X-D31 |
|                     | 气流速、排气<br>中水分含量                            | (环境保护部公告 2017年 第                                                                                                                                                                      | 大流量烟尘(气)测<br>试仪              | YQ3000-D             | NJADT-X-D29 |
| V T                 |                                            | 87号)                                                                                                                                                                                  | 大流量烟尘(气)测<br>试仪              | YQ3000-D             | NJADT-X-D05 |
|                     | AD"                                        |                                                                                                                                                                                       | 便携式烟气含湿量检<br>测仪(21代)         | MH3041型              | NJADT-X-D2  |

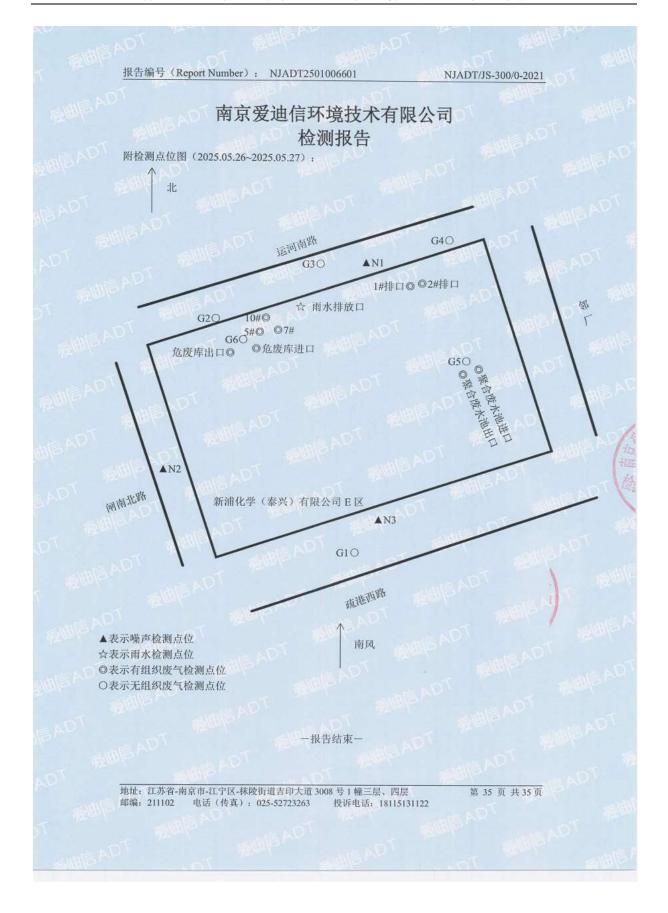
地址: 江苏省-南京市-江宁区-秣陵街道吉印大道 3008 号 1 幢三层、四层 邮编: 211102 电话 (传真): 025-52723263 投诉电话: 18115131122

第 31 页 共 35 页

NJADT/JS-300/0-2021


#### 南京爱迪信环境技术有限公司 检测报告


续表(六)检测方法及仪器


| 检测类别  | 检测项目      | 检测方法                                       | 仪器名称             | 仪器型号                 | 仪器编号        |
|-------|-----------|--------------------------------------------|------------------|----------------------|-------------|
| pT "  |           | Militia AD                                 | 十万分之一天平          | ME55                 | NJADT-S-113 |
|       | AD        | ADT MILE                                   | 大流量烟尘(气)测试仪      | YQ3000-D 型<br>(20 代) | NJADT-X-D3  |
| 有组织废气 | 颗粒物       | 固定污染源废气 低浓度颗粒<br>物的测定 重量法                  | 大流量烟尘(气)测试仪(20代) | YQ3000-D型<br>(20代)   | NJADT-X-D3  |
|       | Sell Sell | НЈ 836-2017                                | 大流量烟尘(气)测<br>试仪  | YQ3000-D             | NJADT-X-D29 |
|       | T Total   | ADT MILITER                                | 大流量烟尘(气)<br>测试仪  | YQ3000-D             | NJADT-X-D0  |
| TOA   | - 32/m    | 爱图(SAD)                                    | 气相色谱仪            | GC9790II 双<br>FID    | NJADT-S-413 |
|       | 自由        | 环境空气 总烃、甲烷和非甲烷总烃的测定 直接进样-气相色谱法 HJ 604-2017 | 真空箱采样器           | MH3051               | NJADT-X-G2  |
|       | - NOT     |                                            | 真空箱采样器           | MH3051               | NJADT-X-G2  |
|       | 非甲烷总烃     |                                            | 真空箱采样器           | MH3051               | NJADT-X-G2  |
| 无组织废气 |           |                                            | 真空箱采样器           | MH3051               | NJADT-X-G2  |
|       |           |                                            | 真空箱采样器           | MH3051               | NJADT-X-G3  |
|       | - 1131/m  | ADT                                        | 真空箱采样器           | MH3051               | NJADT-X-G3  |
|       | 氯乙烯       | 固定污染源排气中氯乙烯的<br>测定 气相色谱法<br>HJ/T 34-1999   | 气相色谱仪            | GC9790plus           | NJADT-S-376 |
| 噪声    | 厂界噪声      | 工业企业厂界环境噪声排放                               | 多功能声级计           | AWA6228+3            | NJADT-X-B0  |
| 栄尸    | 7 が栗戸     | 标准 GB 12348-2008                           | 声级校准器            | AWA6021A             | NJADT-X-C0  |

地址: 江苏省-南京市-江宁区-秣陵街道吉印大道 3008 号 1 幢三层、四层邮编: 211102 电话(传真): 025-52723263 投诉电话: 18115131122

第 32 页 共 35 页







| 监测日期      | 2025.05.26    | 环境    | 条件                                    | A Store      | 晴; 风速: 0.9    | ~1.4m/s | 1151/2 |
|-----------|---------------|-------|---------------------------------------|--------------|---------------|---------|--------|
| 车间工段      | WALL WE       | 运转    | 状态                                    | 车间工段         | ルタクチ 新日       | 运转      | 状态     |
| 名称        | 设备名称、型号       | 开(台)  | 停(台)                                  | 名称           | 设备名称、型号       | 开(台)    | 停 (台)  |
| <b>FE</b> | 间断回收压缩机       | 2     | 0                                     |              | 阻聚剂泵          | 1       | 0 0    |
|           | 间断回收压缩机       | 2     | 0                                     | AO\          | 阻聚剂泵          | 1       | 0      |
|           | 连续回收压缩机       | ATT   | 0                                     | VCM 回收<br>单元 | 废水输送泵         | 2       | 1      |
|           | 连续回收压缩机       | 1     | 0 [1]                                 |              | 阻凝剂桶泵         | 1       | 0      |
|           | VCM 二级压缩机     | 1     | 0                                     | 爱图           | 废气处理单元        | 1       | 0      |
|           | VCM 二级压缩<br>机 | 1000  | 0                                     | 4.518182     | 全自动小袋包装<br>系统 | 1       | 0      |
|           | VCM 加料泵       | 2     | 1                                     | - 包装厂房       | 码垛单元          | 1       | 0      |
| A.D™      | VCM 加料泵       | 2     | 1                                     |              | 吨袋包装机         | 5       | 5      |
|           | R-VCM 加料泵     | 2 / ( | 1                                     |              | 圆形振动筛         | 6       | 0      |
| VCM 回收    | R-VCM 加料泵     | 2     | 1                                     | BAD'         | 分散剂输送泵        | 2       | 1      |
| 单元        | 阻聚剂泵          | 2     | 1                                     | m 5          | 分散剂槽夹套循<br>环泵 | 3       | 1      |
|           | 阻聚剂泵          | 2     | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | SINE         | 分散剂(KA)加料泵    | 1       | 0      |
|           | 阻聚剂泵          | 1     | 0.0                                   |              | 分散剂(KA)加料泵    | 1       | 0      |
|           | 阻聚剂泵          | 1     | 0                                     | 分散剂单         | 分散剂 (JC) 加料泵  | 01      | 0      |
|           | R-VCM 输送泵     | 2     | PA                                    | 元            | 分散剂 (JC) 加料泵  | 1       | 0 0    |
|           | R-VCM 输送泵     | 2     | 1                                     | Villa        | 分散剂(KB)加料泵    | 1       | 0      |
|           | 废水加料泵         | 2     | 1                                     | ADT          | 分散剂(KB)加料泵    | 1/2//   | 0      |
|           | 阻聚剂泵          | 2     | 1                                     |              | 分散剂(RB)加料泵    | 1       | 5 0    |
|           | 阻聚剂泵          | 2     | (1)\E                                 | 407          | 分散剂(RB)加料泵    | 1       | 0      |

第 1 页 共 10 页

# MAN MA

| 监测日期     | 2025.05,26       | 环境                                    | 条件   |           | 晴; 风速: 0.9         | ~1.4m/s   |                                   |
|----------|------------------|---------------------------------------|------|-----------|--------------------|-----------|-----------------------------------|
| 车间工段     | 设备名称、型号          | 运转                                    | 状态   | 车间工段      | Water will         | 运车        | 技状态                               |
| 名称       | 以命石体、至亏          | 开(台)                                  | 停(台) | 名称        | 设备名称、型号            | 开(台)      | 停(台)                              |
| 分散剂单     | 分散剂溶解槽搅<br>拌器    | 3                                     | 0    | OT #      | 旋转进料分布器            | (R)(1)A(C | 0                                 |
| 元        | 分散剂电动葫芦          | 1                                     | 0    |           | 排风机                | 1         | 0                                 |
| Parent I | 浆料循环泵            | 2                                     | 1    | 1)20      | 供风机                | BPY -     | 0                                 |
|          | 浆料循环泵            | 2                                     | 1    | - idhli i | 旋转进料分布器            | 1         | 0                                 |
|          | 蒸汽凝液输送泵          | 2                                     | 1    |           | 排风机                | 1         | 0                                 |
|          | 聚合釜 DPW 冲<br>洗水泵 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 0    | AE AIR    | 供风机                | 7 1       | 0                                 |
|          | 聚合釜 DPW 冲<br>洗水泵 | 1, A                                  | 0    |           | 洗涤塔循环泵             | 2         | $\mathbb{A}^{\mathbb{C}_{1}^{T}}$ |
|          | 浆料 DPW 冲洗<br>水泵  | 1                                     | 0    | ADT       | 洗涤塔循环泵             | 2         | 1                                 |
|          | 浆料 DPW 冲洗<br>水泵  |                                       | 0    |           | PVC 风送系统           | EIBI-A    | 0                                 |
|          | 离心母液外送泵          | 1                                     | 0    | 干燥单元      | 振动筛                | 2         | 0                                 |
| 干燥单元     | DPW 输送泵          | 1                                     | 0    | 7         | 振动筛                | 2         | 0                                 |
|          | DPW 输送泵          | 1                                     | 0    |           | 一线干燥风机电动葫芦         | ACI(      | 0                                 |
|          | 减温水泵             | 2                                     | 8/P7 |           | 二线干燥风机电动葫芦         | 1         | 0                                 |
|          | 浆料槽搅拌器           | 1                                     | 0    |           | 干燥床电动单梁<br>桥式起重机   | 1         | 0                                 |
|          | 浆料槽搅拌器           | givi\=                                | 0    |           | 干燥离心机电动<br>单梁桥式起重机 | 12        | 0                                 |
|          | 离心机              | 3                                     | 0    |           | 离心机下料斗气<br>锤       | 6         | 0                                 |
|          | 离心机              | 3                                     | 0    |           | 离心机下料斗气<br>锤       | 6         | 0                                 |
| 面面       | 热水循环泵            | 2                                     | 1    |           | 干燥旋风分离器<br>下料管线气锤  | 2 \ 0     | 0                                 |
|          | 热水循环泵            | 2                                     | 1    |           | 干燥旋风分离器<br>下料管线气锤  | 2         | 0                                 |

第 2 页 共 10 页

| 监测日期       | 2025.05.26     | 环境   | 条件      | A Million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 晴; 风速: 0.9          | ~1.4m/s  | fin/s |
|------------|----------------|------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------|-------|
| 车间工段       | THE TOTAL THE  | 运转   | 状态      | 车间工段                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | In to to the Bill D | 运轴       | 状态    |
| 名称         | 设备名称、型号        | 开(台) | 停(台)    | 名称                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 设备名称、型号             | 开(台)     | 停(台)  |
| 干燥单元       | 风送风机检修小<br>车   | 10   | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 高压出料槽搅拌 器           | 2        | 0     |
| 1          | 生活污水排水泵        | 2    | 100     | 浆料汽提                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 高压出料槽搅拌<br>器        | 2        | 0     |
|            | 清净雨水排水泵        | 3    | 2       | 单元                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 出料槽搅拌器              | 1.0      | 0     |
| 公辅设施       | 事故污水池排水泵       | 2    | )(t)(I) | ) \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 出料槽搅拌器              | 1        | 0     |
|            | 初期雨水池排水泵       | 2    | 1       | The state of the s | 聚合真空泵               | 3/1      | 0     |
| 金修车间       | 检修车间桥式起<br>重机  | 1    | 0       | 4 3 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 二级回收泵               | 1        | 0     |
|            | 汽提真空泵          | 1    | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 聚合尾气风机              | 1        | 0     |
|            | 汽提真空泵          | 1    | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 聚合抽真空风机             | 1        | 0     |
|            | 浆料输送泵          | 2    | 1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 聚合抽真空风机             | 1        | 0     |
|            | 浆料输送泵          | 2    | 1       | AD"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 聚合釜夹套循环<br>泵        | 1        | 0     |
|            | VAM 加料泵        | s Fi | 0       | n1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 聚合釜夹套循环<br>泵        | 1.4      | 0     |
|            | 汽提进料泵          | 2    | 1       | 聚合单元                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 消泡剂 (FO) 泵          | 1        | 0     |
| 浆料汽提<br>单元 | 汽提进料泵          | 2    | 1,0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 消泡剂 (FO) 泵          | 1        | 0     |
| alis AC    | 汽提出料泵          | 2    | 1       | है। <b>का</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 浆料出料泵               | 2        | 1     |
|            | 汽提出料泵          | 2    | h 17    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 浆料出料泵               | 2        | 1     |
|            | 汽提热水泵          | 2    | 1       | anti a AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 聚合废水输送泵             | 1        | 0     |
|            | 汽提热水泵          | 2    | 1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 防粘釜剂 (NS)<br>桶泵     | 1        | 10    |
| D,         | R-VAM 加料泵      | 1    | 0       | EAD!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 防粘釜剂 (NS)<br>桶泵     | 1        | 0     |
|            | VAM 冷凝器注<br>入泵 | BAD  | 0       | 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 添加剂桶泵               | Signal P | 0     |

第 3 页 共 10 页

# 海山 AOT 附件

| 监测日期 | 2025.05.26     | 环境              | 条件        | HIS L   | 晴; 风速: 0.9             | 9~1.4m/s          |       |
|------|----------------|-----------------|-----------|---------|------------------------|-------------------|-------|
| 车间工段 | 设备名称、型号        | 运转              | 状态        | 车间工段    | With Arth Will         | 运转                | 状态    |
| 名称   | 以钳石柳、至与        | 开(台)            | 停(台)      | 名称      | 设备名称、型号                | 开(台)              | 停 (台) |
|      | 添加剂桶泵          | 1 -             | 0         |         | 减速机                    | 4                 | 0     |
|      | 抗氧剂 (HK) 桶泵    | 1               | 0         | or "    | 聚合釜搅拌器                 | 1                 | 0     |
|      | 消光剂 (EB) 加料泵   | O <sup>(1</sup> | 0         | 爱创      | 减速机                    | A4)T              | 0     |
|      | LA 加料泵         | 1               | 0         |         | 中和剤储槽搅拌<br>器           | 1                 | 0     |
|      | 抗氧剂 (HK) 加料泵   | 1               | 0         | MEN P   | 中和剂储槽搅拌<br>器           |                   | 0     |
|      | 冷剂泵            | 2               | 1         | NHIE AT | 添加剂储槽搅拌<br>器           | T 1 7             | 0     |
|      | 聚合废水输送泵        |                 | 0         |         | 添加剂储槽搅拌 器              | 1                 | 10    |
|      | 聚合废水输送泵        | 1               | 0         | EW,     | 消光剂(EB)储槽搅拌器           | 1                 | 0     |
|      | 消泡剂 (FO) 泵     | EAD'            | 0         | TOA     | 抗氧剂(HK)储<br>槽搅拌器       | A Times           | 0     |
| 聚合单元 | 消泡剂 (FO) 泵     | 1               | 0         | 聚合单元    | 引发剂 F、G、H<br>储槽搅拌器     | 3                 | 0     |
|      | 消泡剂(FO)桶<br>泵  | 1               | 7.4 0 Jen | T.      | 高压清洗泵(高<br>压清洗系统)      | 1                 | 0     |
|      | 消泡剂(FO)桶<br>泵  | 1               | 0         | 極曲      | 自动清洗喷枪<br>(高压清洗系<br>统) | po <sub>l</sub> T | 0     |
|      | 消光剂(EB)桶<br>泵  | 1               | 0         |         | 引发剂电梯                  | 1                 | 0     |
|      | LA 桶泵          | 1(5)            | 0         |         | 一线聚合北侧助<br>剂电动葫芦       | 1                 | 5/0   |
|      | 防粘釜剂 (NS)<br>泵 | 1               | 0         |         | 二线聚合北侧助剂电动葫芦           | 1                 | 0     |
|      | 防粘釜剂(NS)<br>泵  | al i            | 0         |         | 一线聚合南侧助<br>剂电动葫芦       |                   | 0     |
|      | 引发剂冷剂制冷<br>系统  | 2               | 1         |         | 二线聚合南侧助<br>剂电动葫芦       | 1                 | 0     |
|      | 聚合釜搅拌器         | 1               | 0 _ /     |         | 聚合废水池尾气 处理装置           | 1                 | 0     |
|      | 减速机            | 4               | 0         |         | 引风机                    | _ \ D^            | 0     |

第 4 页 共 10 页

| 监测日期       | 2025.05.26      | 环境       | 条件   |         | 晴; 风速: 0.9         | ~1.4m/s           |       |
|------------|-----------------|----------|------|---------|--------------------|-------------------|-------|
| 车间工段       |                 | 运转       | 状态   | 车间工段    | All to to the Hell | 运转                | 状态    |
| 名称         | 设备名称、型号         | 开(台)     | 停(台) | 名称      | 设备名称、型号            | 开(台)              | 停(台)  |
| MA A M. —  | 活性炭吸附装置         | 2        | 0    |         | 循环水冷却塔             | 3                 | 0 3   |
| 聚合单元       | 暖通系统            | 1        | 0    | NOT     | 循环水泵               | 3                 | 3     |
| NA M- 4.34 | 溴化锂冷水机组         | 2        | 1    |         | 循环水泵               | 1                 | 1     |
| 冷冻水站       | 冷冻水泵            | 2        | 1    | 循环水站    | 加药设备               |                   | 0     |
| A S        | 脱氧塔真空泵          | 1        | 0    |         | 循环水站排水泵            | 2                 | 1     |
|            | 氮气压缩机           | 2        | 1    | Fig.    | 循环水站连通渠<br>手动葫芦    | 2                 | 0     |
|            | 纯水加料泵           | 2        | 1    | 引发剂冷库   | 引发剂冷库制冷<br>系统      | 6                 | 3     |
|            | 纯水加料泵           | 2        | 1    |         | might of P         |                   | L AD  |
|            | 脱氧脱盐水泵          | 2        | 1    | AU AD   |                    | li <sub>ter</sub> | 100   |
|            | 热脱盐水加料泵         | 2        | 1    | * O.L   | 遍間 AD              |                   | -     |
|            | 热脱盐水加料泵         | 2        | 1    |         |                    | - Italies         | N     |
| 脱盐水单       | 连续纯水泵           | 3        | 1    |         | TOA ELL            |                   |       |
| 元          | 热脱盐水循环泵         |          | 0    | L A     | 107/s              | IA Elmi           |       |
|            | 热脱盐水循环泵         | 1        | 0    |         | 0                  | 1112              | 311   |
|            | 事故注水泵           | 071      | 0    | 161 th  | Er.                | ≥ ADT             |       |
|            | 机封水泵            | 2        | 0.0  | 综合化学    | 化学品库尾气处            | 1                 | 0     |
|            | 注水泵             | 3        | 1    | 品库      | 理装置                | 7                 | Part. |
|            | 聚合釜清洗泵          | 1        | 0    |         | 夏田(三               |                   | - 61  |
|            | 聚合釜清洗泵          | 1        | 0    | JA Elec |                    | 1                 | 9/2   |
|            | 蒸汽凝液输送泵         | 2        | 1    | 5/07/6  | JA BIRIS           |                   |       |
| Pσ         | 电动消防水泵          | 4 1/1/10 | 1    | Tone    |                    | His               | Pr.   |
|            | 柴油消防水泵          | 1        | 1    | FA      | TOA BOLL           |                   |       |
| 消防水站       | 消防稳压泵           | 20       | 2    |         | <b>菱脚</b> /2.      | and link          | ), C  |
|            | 消防水站电动单<br>梁起重机 | 1        | 0    | AO'     | 70A sa.            | Miles I           | F)    |

第5页共10页

# 海州 ADT 附件

| 监测日期   | 2025.05.27    | 环境    | 条件        | AL SAU          | 晴; 风速; 1.1    | ~1.6m/s          |       |
|--------|---------------|-------|-----------|-----------------|---------------|------------------|-------|
| 车间工段   | 设备名称、型号       | 运转    | 状态        | 车间工段            | THE ACT WE    | 运转               | 状态    |
| 名称     | 议留石体、至亏       | 开(台)  | 停(台)      | 名称              | 设备名称、型号       | 开(台)             | 停 (台) |
|        | 间断回收压缩机       | 2     | 0         | ev.             | 阻聚剂泵          | 1 A L            | 0     |
|        | 间断回收压缩机       | 2     | 0         |                 | 阻聚剂泵          | 1                | 0     |
|        | 连续回收压缩机       | 1     | 0         | VCM 回收<br>単元    | 废水输送泵         | 2                | 1     |
|        | 连续回收压缩机       | 1     | 0         | SAID S          | 阻凝剂桶泵         | -1               | 0     |
|        | VCM 二级压缩<br>机 | 1     | A 0       |                 | 废气处理单元        | 1                | 0     |
|        | VCM 二级压缩<br>机 | 1     | 0         |                 | 全自动小袋包装<br>系统 | 1                | 0     |
| DT     | VCM 加料泵       | 2     | 1         | 包装厂房            | 码垛单元          | #18 <sup>1</sup> | 0     |
|        | VCM 加料泵       | 2     | 1         | 13 ac/ 174      | 吨袋包装机         | 5                | 5     |
| 1 12   | R-VCM 加料泵     | 2     | 1         | ∧D <sup>T</sup> | 圆形振动筛         | 6                | 0     |
| VCM 回收 | R-VCM 加料泵     | 2     | 1         | 15/             | 分散剂输送泵        | 2                | 1     |
| 单元     | 阻聚剂泵          | 2     | JA Elitor | T.              | 分散剂槽夹套循<br>环泵 | 3                | 1     |
| 為問信為   | 阻聚剂泵          | 2     | 1         | 18 B            | 分散剂 (KA) 加料泵  | ADIT             | 0     |
| TOA    | 阻聚剂泵          | 10(3) | 0         | L A             | 分散剂(KA)加料泵    | 1                | 0     |
| g(c)   | 阻聚剂泵          | 1     | 0-0       | 分散剂单            | 分散剂(JC)加料泵    | 1                | 0     |
| TOA    | R-VCM 输送泵     | 2     | 1         | 元〇              | 分散剂(JC)加料泵    | 1                | 0     |
| É      | R-VCM 输送泵     | 2/    | 1         |                 | 分散剂(KB)加料泵    | 1                | 00    |
| ) \    | 废水加料泵         | 2     | 1/0/      | AD'             | 分散剂(KB)加料泵    | 1                | 0     |
| 爱田     | 阻聚剂泵          | 2     | 1         | DT 7            | 分散剂(RB)加料泵    | BIJAD            | 0     |
|        | 阻聚剂泵          | _2    | 1         |                 | 分散剂 (RB) 加料泵  | 1 -              | 0     |

第 6 页 共 10 页

| 监测日期    | 2025.05.27       | <b></b> | 条件    | A BAN       | 晴; 风速: 1.1         | ~1.0111/8 | -     |
|---------|------------------|---------|-------|-------------|--------------------|-----------|-------|
| 车间工段    | 设备名称、型号          | 运转      | 状态    | 车间工段        | 设备名称、型号            | 运转        | 状态    |
| 名称      | 双角石桥、至与          | 开(台)    | 停(台)  | 名称          | 汉田石怀,王与            | 开(台)      | 停 (台) |
| 分散剂单    | 分散剂溶解槽搅<br>拌器    | 3       | 0     |             | 旋转进料分布器            | 1         | DT0   |
| 元       | 分散剂电动葫芦          | 1       | 0     | VO.         | 排风机                | 1         | 0     |
| 海山      | 浆料循环泵            | 2       | 1     | 1           | 供风机                | 1,0       | 0     |
|         | 浆料循环泵            | 2       | (1) A |             | 旋转进料分布器            | 1         | 0     |
|         | 蒸汽凝液输送泵          | 7 2     | 1     | <b>\$10</b> | 排风机                | AUT       | 0     |
|         | 聚合釜 DPW 冲<br>洗水泵 | 1       | 0     |             | 供风机                | 1         | 0     |
|         | 聚合釜 DPW 冲<br>洗水泵 | 1       | 0     |             | 洗涤塔循环泵             | 2         | 1     |
|         | 浆料 DPW 冲洗<br>水泵  | 1921 P  | 0     | MEAD        | 洗涤塔循环泵             | 2         | 1     |
|         | 浆料 DPW 冲洗<br>水泵  | 1 1     | 0     |             | PVC 风送系统           | 1         | 0     |
|         | 离心母液外送泵          | 1       | 0     | 干燥单元        | 振动筛                | 2         | 0     |
| 干燥单元    | DPW 输送泵          | , D T   | 0     |             | 振动筛                | 2         | 0     |
| 1 75-70 | DPW 输送泵          | 1       | 0     | (O)         | 一线干燥风机电<br>动葫芦     | 1         | 0     |
|         | 减温水泵             | 2       | 1     |             | 二线干燥风机电<br>动葫芦     | S 1       | 0     |
|         | 浆料槽搅拌器           | 1       | 0     |             | 干燥床电动单梁<br>桥式起重机   | 1         | 0     |
|         | 浆料槽搅拌器           | 1       | 10    |             | 干燥离心机电动<br>单梁桥式起重机 | 1         | 0.1   |
|         | 离心机              | 3       | 0     | 加思科         | 离心机下料斗气<br>锤       | 6         | 0     |
|         | 离心机              | 3 -     | 0     | E ADT       | 离心机下料斗气<br>锤       | 6         | 0     |
|         | 热水循环泵            | 2       | 1     | 101         | 干燥旋风分离器<br>下料管线气锤  | 2         | 0     |
|         | 热水循环泵            | 2       | 1     | ADT         | 干燥旋风分离器<br>下料管线气锤  | 2         | 0     |

第 7 页 共 10 页

# 爱图》ADT

| 监测日期       | 2025.05.27     | 环境                              | 条件             |          | 晴; 风速: 1.             | 1~1.6m/s |         |
|------------|----------------|---------------------------------|----------------|----------|-----------------------|----------|---------|
| 车间工段       | 设备名称、型号        | 运转                              | 状态             | 车间工段     | VII. AT COTTON TO LET | 运转       | <b></b> |
| 名称         | 以前右侧、至与        | 开(台)                            | 停 (台)          | 名称       | 设备名称、型号               | 开(台)     | 停 (台    |
| 干燥单元       | 风送风机检修小<br>车   | $_{3}$ $\wedge$ $_{1}$ $\wedge$ | 0              | 01       | 高压出料槽搅拌 器             | 2        | 0       |
|            | 生活污水排水泵        | 2                               | Sales,         | 浆料汽提     | 高压出料槽搅拌<br>器          | 2        | 0       |
| AL AND AL  | 清净雨水排水泵        | 3                               | 2,0            | 单元       | 出料槽搅拌器                | 1        | 0       |
| 公辅设施       | 事故污水池排水<br>泵   | 2                               | 1              | 雅曲馬      | 出料槽搅拌器                | 0 1      | 0       |
| - 1        | 初期雨水池排水 泵      | 2                               | POT            |          | 聚合真空泵                 | 1        | 0       |
| 检修车间       | 检修车间桥式起<br>重机  | 1                               | 0              |          | 二级回收泵                 | 1        | 0       |
|            | 汽提真空泵          |                                 | 0              | TOA      | 聚合尾气风机                | 1        | 0       |
|            | 汽提真空泵          | 1                               | 0              |          | 聚合抽真空风机               | 1        | 0       |
|            | 浆料输送泵          | 2                               | ī              | AOT<br>M | 聚合抽真空风机               |          | 0       |
|            | 浆料输送泵          | 2                               | 1              |          | 聚合釜夹套循环<br>泵          | 101      | 0       |
|            | VAM 加料泵        | 1                               | 0 1            |          | 聚合釜夹套循环<br>泵          | 1        | 0       |
|            | 汽提进料泵          | 7 2                             | 1              | 聚合单元     | 消泡剂 (FO) 泵            | ADT      | 0       |
| 浆料汽提<br>单元 | 汽提进料泵          | 2                               | SAP            |          | 消泡剂 (FO) 泵            | 1        | 0       |
|            | 汽提出料泵          | 2                               | 1              |          | 浆料出料泵                 | √ 2      | 1       |
|            | 汽提出料泵          | 2                               | v <sub>i</sub> |          | 浆料出料泵                 | 2        | 3 1     |
|            | 汽提热水泵          | 2                               | 1 💮            | 图图       | 聚合废水输送泵               | 1        | 0       |
| T - 1      | 汽提热水泵          | 2 2                             | 1              | TOM      | 防粘釜剂 (NS)<br>桶泵       | 11/5     | 0       |
|            | R-VAM 加料泵      | 762                             | 0              |          | 防粘釜剂 (NS)<br>桶泵       | 1,0      | 0       |
|            | VAM 冷凝器注<br>入泵 | 1                               | 0              | OT I     | 添加剂桶泵                 | (E)\C_1  | 0       |

第 8 页 共 10 页

| 监测日期 | 2025.05.27      | <b></b>        | 条件       | A. C.       | 晴; 风速: 1.1             | ~1.0m/s | Trail. |
|------|-----------------|----------------|----------|-------------|------------------------|---------|--------|
| 车间工段 | 设备名称、型号         | 运转             | 状态       | 车间工段        | 设备名称、型号                | 运转      | 状态     |
| 名称   | 以田石柳、王丁         | 开(台)           | 停(台)     | 名称          | <b>公田石柳</b> (王 )       | 开(台)    | 停 (台)  |
| W.   | 添加剂桶泵           | 1              | 0        |             | 减速机                    | 4       | 0      |
|      | 抗氧剂 (HK) 桶<br>泵 | OA             | 0        | . 61        | 聚合釜搅拌器                 |         | 0      |
|      | 消光剂(EB)加料泵      | 1              | 0        |             | 减速机                    | 4       | 0      |
|      | LA 加料泵          | 泵 1 0          | 中和剂储槽搅拌器 | 0\\1^\\     | 0                      |         |        |
|      | 抗氧剂 (HK) 加料泵    | o√ 1 . 8       | 0        | 10 m        | 中和剂储槽搅拌<br>器           | 17      | 0      |
|      | 冷剂泵             | 2              |          | 添加剂储槽搅拌器    | 1                      | 0       |        |
|      | 聚合废水输送泵         | 1              | 0        | 爱谢信息        | 添加剂储槽搅拌<br>器           |         | 0      |
|      | 聚合废水输送泵         | 1              | 0        | 聚合单元        | 消光剂(EB)储槽搅拌器           | 1       | 0      |
|      | 消泡剂 (FO) 泵      | 1              | 0        |             | 抗氧剂(HK)储槽搅拌器           | 1       | 0      |
| 聚合单元 | 消泡剂 (FO) 泵      | 1              | 0        |             | 引发剂 F、G、H<br>储槽搅拌器     | 3       | 0      |
|      | 消泡剂(FO)桶<br>泵   | SIDT           | 0        | 7           | 高压清洗泵(高<br>压清洗系统)      | 1 1     | 0      |
|      | 消泡剂(FO)桶泵       | o <sup>1</sup> | 0        | NEW SERVICE | 自动清洗喷枪<br>(高压清洗系<br>统) | 1       | 0      |
|      | 消光剂(EB)桶<br>泵   | 1              | 0 0      |             | 引发剂电梯                  | 1       | 0      |
|      | LA 桶泵           | 1              | 0-       | <b>美田</b>   | 一线聚合北侧助<br>剂电动葫芦       | Oi      | 0      |
|      | 防粘釜剂 (NS)<br>泵  | 1              | 0        | JA Ellei    | 二线聚合北侧助<br>剂电动葫芦       | 1       | 0      |
|      | 防粘釜剂 (NS)<br>泵  | 1 P            | 0        |             | 一线聚合南侧助<br>剂电动葫芦       | 1       | ACO    |
|      | 引发剂冷剂制冷<br>系统   | 2              | 1 (      | ADT         | 二线聚合南侧助剂电动葫芦           | 1       | 0      |
|      | 聚合釜搅拌器          | (And           | 0        |             | 聚合废水池尾气<br>处理装置        | E BLOCK | 0      |
|      | 减速机             | 4              | 0        |             | 引风机                    | 1       | 0      |

第 9 页 共 10 页

| 监测日期      | 2025.05.27      | 环境   | 条件   | ALE ALE   | 晴; 风速: 1.                             | 1~1.6m/s   |         |
|-----------|-----------------|------|------|-----------|---------------------------------------|------------|---------|
| 车间工段      | 设备名称、型号         | 运转   | 状态   | 车间工段      | In to to the water                    | 运转         | 状态      |
| 名称        | 以田石柳、至与         | 开(台) | 停(台) | 名称        | 设备名称、型号                               | 开(台)       | 停(台)    |
| 聚合单元      | 活性炭吸附装置         | 2    | 0    |           | 循环水冷却塔                                | 3          | 3       |
| ※ 日平九     | 暖通系统            | 1    | 0    | or "      | 循环水泵                                  | 3          | 3       |
| 冷冻水站      | 溴化锂冷水机组         | 2    | 1    |           | 循环水泵                                  | 1          | 1       |
| 141/1/171 | 冷冻水泵            | 2    | 1    | 循环水站      | 加药设备                                  | 1          | 0       |
|           | 脱氧塔真空泵          | 1 <  | 0    |           | 循环水站排水泵                               | 2          | S/(1) 3 |
|           | 氮气压缩机           | 2    | 1_   | Mill -    | 循环水站连通渠<br>手动葫芦                       | 2          | 0       |
|           | 纯水加料泵           | 2    | 1    | 引发剂冷<br>库 | 引发剂冷库制冷<br>系统                         | 6          | 3       |
|           | 纯水加料泵           | 2    | 1    |           | 1000000000000000000000000000000000000 |            | Tax     |
|           | 脱氧脱盐水泵          | 2    | 1    | TOA       |                                       | Militire . |         |
|           | 热脱盐水加料泵         | 2    | 1    |           | T.GA Allen                            |            |         |
| <b>10</b> | 热脱盐水加料泵         | 2    | 1    | m         |                                       |            | 2       |
| 脱盐水单元     | 连续纯水泵           | 3    | 1    |           | TON                                   |            | 種       |
| 200       | 热脱盐水循环泵         | LOT  | 0    |           |                                       |            |         |
|           | 热脱盐水循环泵         | 1    | 0    | ) \       | - T                                   |            | \$/mas= |
|           | 事故注水泵           | (1)  | 0    | Selenia . |                                       | NOT        | Make 1  |
|           | 机封水泵            | 2    | 00   | 综合化学      | 化学品库尾气处                               | 1          | 0       |
|           | 注水泵             | 3    | 1    | 品库        | 理装置                                   | - F        |         |
|           | 聚合釜清洗泵          | 1    | 0    |           | SHE A                                 |            |         |
|           | 聚合釜清洗泵          | 10   | 0    | TOA SIL   |                                       | कृषि       |         |
|           | 蒸汽凝液输送泵         | 2    | 1    | 11/2      | with AD                               |            |         |
| T 19      | 电动消防水泵          |      | 1    |           |                                       | 高曲語        |         |
|           | 柴油消防水泵          | 1    | 100  | 5 00      | TON                                   |            |         |
| 消防水站      | 消防稳压泵           | 2    | 2    |           | 0/2                                   | dia AD     |         |
|           | 消防水站电动单<br>梁起重机 | 1    | 0    | 0         | * DT                                  |            |         |

第 10 页 共 10 页

## 附件8——一般变动影响分析报告技术评审意见

# 新浦化学(泰兴)有限公司 《年产 50 万吨乙烯法聚合技术制备聚氯乙烯项目一般变动环境影响 分析报告》技术评审意见

2025 年 7 月 28 日,新浦化学(泰兴)有限公司在公司组织召开了《年产 50 万吨 乙烯法聚合技术制备聚氯乙烯项目一般变动环境影响分析报告》(以下简称"《变动报告》")技术评审会,会议邀请 3 名专家组成专家组。新浦化学(泰兴)有限公司对项目变动情况以及《变动报告》的主要内容进行了汇报,专家组经评议形成技术评审意见如下:

#### 一、项目基本情况

新浦化学(泰兴)有限公司(以下简称"公司")年产50万吨乙烯法聚合技术制备聚氯乙烯项目位于泰兴经济开发区闸南路东侧、威立雅环保科技(泰兴)有限公司西侧、运河南路南侧、疏港路北侧。公司于2022年申报建设"年产50万吨乙烯法聚合技术制备聚氯乙烯项目",该项目由泰州市生态环境局批复(泰环审(泰兴)〔2022〕224号)。

该项目在实际建设过程中存在以下变动:

1、原环评申报内容中建设两条 PVC 生产线,包装单元共建设 7 个料仓,每个料仓 配套一套布袋除尘系统,气力输送粉尘经布袋除尘处理后通过料仓顶排口排出(3#~9#)。 其中一个料仓用于储存等外品(9#排气筒),正常情况下同时使用其中的6 个料仓。

实际建成后 PVC 装置共设两条生产线、7 个料仓(编号为 A-G)不变,但工作方式发生了变化。运行时一条生产线对应 A、B、C仓,另一条生产线对应 D、E、F仓。G仓作为两条生产线共用料仓,仅为 25kg 包装机供料,现场实际根据包装 PVC 粉料牌号进行切仓操作,即需要包装 25kg 粉料时两条生产线气力可输送系统切至 G仓。正常运行时每条生产线仅对应一个料仓,因此 7 个料仓中最多仅 2 个料仓同时使用。由于项目生产规模不变,所以包装单元涉及排放的粉尘废气污染物排放速率及排放方式发生变化,但颗粒物排放总量不变。

2、实际建成试运行期间干燥、筛分废气(1、2#排气筒)污染物非甲烷总烃实测值与环评报告比偏高,经核算干燥、筛分废气非甲烷总烃实际废气排放量(5.237t/a)与环评报告相比增加了4.997t/a。经分析,这是由于环评阶段废气排放量采用物料平衡法核

1

核算(数据来自设计院提供的工艺包),设计阶段未考虑其他辅料可能带入的易挥发物质,导致 PVC 浆料中残留的挥发物质增加,干燥、筛分工序产生的有机废气污染物(以非甲烷总烃计)也相应增加。考虑干燥、筛分废气存在风量大、浓度低、高湿、温度较高(>50℃)的特点,不适宜采取活性炭吸附、焚烧等有机废气传统处理措施。且废气中非甲烷总烃实际产生速率约为 0.33kg/h(产生浓度未经处理即可满足排放要求),无需执行《挥发性有机物无组织排放控制标准》(GB 37822-2019)"收集的废气中 NMHC 初始排放速率≥2kg/h 时,应配置 VOCs 处理设施,处理效率不应低于 80%"要求。

为此,公司对厂内生产装置涉及的各类搅拌器、泵、阀门等设备进行改造提升其密封性能,以期达到减少无组织废气排放量目的。具体包括:①高低压出料槽搅拌器机械密封采用双端面机械密封;②部分阀门采用波纹管阀门;③VCM/R-VCM单体泵原采用隔离液双端面机械密封。同时,建成后公司按照要求开展 VOCs 泄漏检测与修复(LDAR)工作,对厂内设备动静密封处排放速率≥500μmol/mol 密封点进行及时修复。根据检测结果,厂内无组织废气污染物非甲烷总烃排放量可由环评报告中核算的5.656t/a减少至0.656t/a(减少量5t/a),非甲烷总烃无组织减少部分全部在装置内经VCM回收单元后作为PSA变压吸附过程驰放气,送烯烃厂区VCM项目工业酸装置综合利用后经一级碱洗处理后排放(去除效率99.95%,最终排放量为0.0025t/a)。上述措施实施后,可做到全厂非甲烷总烃排放量与环评报告相比不新增。

#### 3、排气筒排放参数及排放方式发生变化

各废气经收集处理后排气筒排放参数及排放方式实际建设与环评报告略有不同,具体见下表。

| (चेन |         |               | 环评报告内容                                         | 1                                                    | 3                 | 实际建设情况                              |                    |
|------|---------|---------------|------------------------------------------------|------------------------------------------------------|-------------------|-------------------------------------|--------------------|
| 序号   | 污染源     | 处理措施          | 排放参数                                           | 排放工况                                                 | 处理措施              | 排放参数                                | 排放<br>工况           |
| 1    | 干燥、筛分废气 | 旋风除尘+<br>水洗装置 | 1#、2#排气<br>筒: 高度<br>30m、内径<br>1.5m             | 正常工况                                                 | 旋风除尘<br>+水洗装<br>置 | 1#、2#排气<br>筒:高度<br>40m,内径<br>2m     | 正常工况               |
| 2    | 气力输送废气  | 自带袋式除尘        | 共7个料仓7<br>个排气筒<br>(3#~9#):<br>高度45m、内<br>径0.4m | 正常工况下使<br>用其中的6个<br>料仓;非正常<br>工况时另外一<br>个等外品排口<br>运行 | 自带袋式除尘            | 共7个料仓7<br>个排气筒:高<br>度45m,内径<br>0.4m | 最多个<br>权2个<br>料同使用 |
| 3    | 包装废     | 袋式除尘          | 10#排气筒:                                        | 正常工况                                                 | 袋式除尘              | 10#排气筒:                             | 正常                 |

表 1 项目排气筒排放参数及排放方式实际情况与环评报告对比

| 序 |                   |       | 环评报告内容                        |      | 3     | 实际建设情况                          |          |
|---|-------------------|-------|-------------------------------|------|-------|---------------------------------|----------|
| 号 | 污染源               | 处理措施  | 排放参数                          | 排放工况 | 处理措施  | 排放参数                            | 排放<br>工况 |
|   | 气                 |       | 高度 15m、内                      |      |       | 高度 23.6m,                       | 工况       |
|   |                   |       | 径 0.8m                        |      |       | 内径 0.7m                         |          |
| 4 | 聚合废<br>水池有<br>机废气 | 二级活性炭 | 11#排气筒:<br>高度 25m、内<br>径 0.4m | 正常工况 | 二级活性  | 11#排气筒:<br>高度 25m、内<br>径 0.254m | 正常工况     |
| 5 | 危废库<br>废气         | 二级活性炭 | 12#排气筒:<br>高度 15m、内<br>径 0.4m | 正常工况 | 二级活性炭 | 12#排气筒:<br>高度 15m、内<br>径 0.6m   | 正常工况     |

与环评报告相比,排气筒排放参数及排放方式变动未引起废气污染物排放量增加; 未增加废气主要排放口;未降低主要排放口排气筒高度。

## 二、评审结论

专家组评审认为:新浦化学(泰兴)有限公司提交评审的《变动报告》,对"年产50万吨乙烯法聚合技术制备聚氯乙烯项目"建设内容的变动情况、评价要素变化情况、环境影响分析基本清楚,分析结论原则可信。对照《石油炼制与石油化工建设项目重大变动清单(试行)》(环办〔2015〕52号)文件判定,该项目存在的变动不属于重大变动,可纳入竣工环境保护验收管理。

## 三、《变动报告》修改建议

- 1、加强项目变动内容的梳理和变动原因说明,充分说明变动的必要性、合理性。
- 2、核实项目变动带来的污染源变化和环境影响,确保做到不新增污染因子或污染物排放量、范围或强度增加。

专家组成员签名:

- Vie

this is

